
Agile
Software

Construction

John Hunt

H
u

n
t

A
gile So

ftw
are C

o
n
stru

ctio
n

FIXED

FLEXIBLET
I
M

E

A

N
D

R

E
S

O
U

R
C

E
S

F
U

N
C

T
I
O

N
A

L
I
T

Y

F
U

N
C

T
I
O

N
A

L
I
T

Y
T
I
M

E

A

N
D

R

E
S

O
U

R
C

E
S

Agile Software Construction

John Hunt

Agile Software
Construction

John Hunt, BSc, PhD, MBCS, CEng, MEng
Experis Ltd.
Chippenham
Wiltshire
UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2005930512

ISBN-10: 1-85233-944-6 Printed on acid-free paper
ISBN-13: 978-1-85233-944-9

C© Springer-Verlag London Limited 2006

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by
the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent
to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any errors or
omissions that may be made.

Printed in the United States of America (TB/MV)

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springeronline.com

Contents

1 Introduction . 1
1.1 Why This Book? . 1
1.2 A Bit of History . 1
1.3 What Is Agile Software Development? . 2
1.4 Why Be Agile? . 3
1.5 What This Book Is About? . 3
1.6 Implementation Languages . 3
1.7 The Structure of the Book . 4
1.8 Where to Get More Information? . 6
1.9 Where to Go Online? . 6

2 Agile Methods and the Agile Manifesto . 9
2.1 Introduction . 9
2.2 What Is Agile? . 9
2.3 The Agile Manifesto . 10
2.4 What Are Agile Methods? . 12
2.5 Agile Modelling . 14
2.6 XP: eXtreme Programming . 16

2.6.1 The XP Project Lifecycle . 17
2.6.2 User Stories . 17
2.6.3 Architectural Spike . 18
2.6.4 Release Planning . 18
2.6.5 Iterations . 18
2.6.6 Acceptance Testing . 19
2.6.7 Release . 19
2.6.8 Why Is XP Controversial? . 19

2.7 DSDM . 21
2.8 SCRUM . 25

2.8.1 Feature-Driven Development . 26
2.9 Summary . 30

3 Agile Modelling . 31
3.1 Introduction . 31
3.2 Modelling Misconceptions . 31

v

vi Contents

3.3 Agile Modelling . 35
3.3.1 Agile Models Add Value . 36
3.3.2 Agile Models Fulfil Their Purpose 37
3.3.3 Agile Models Are Understandable 37
3.3.4 Accuracy and Consistency . 37
3.3.5 Agile Models Are Sufficiently Detailed 39
3.3.6 Agile Models Are as Simple as Possible 39

3.4 What Sort of Models? . 40
3.5 Tool Misconceptions . 41
3.6 Updating Agile Models . 42
3.7 Summary . 43

4 How to Become an Agile Modeller . 45
4.1 Introduction . 45
4.2 Agile Modelling Practices . 45

4.2.1 The Core Practices . 45
4.2.2 The Supplementary Practices . 46
4.2.3 Interactions Between Practices . 48

4.3 Adopt the Core Agile Modelling Practices 49
4.3.1 Iterative and Incremental Modelling 49
4.3.2 Working as a Team . 50
4.3.3 Promoting Simplicity . 52
4.3.4 Validating the Models . 55

4.4 Consider the Supplementary Practices . 56
4.4.1 Improving Productivity . 56
4.4.2 Design Patterns . 57
4.4.3 Controlling Documentation . 59
4.4.4 Motivations for Modelling . 61

4.5 Maximise You Modelling Potential . 61
4.5.1 Know Your Tools . 61
4.5.2 Refactoring . 62
4.5.3 Test-First Design . 62
4.5.4 Model in Increments . 62
4.5.5 Think Small . 63
4.5.6 Agile Models Are Good Enough . 63

4.6 Agile Modelling Sessions . 63
4.7 Agile Models . 65
4.8 Agile Documentation . 65
4.9 Summary . 67

5 Extreme Programming (XP) . 69
5.1 Introduction . 69
5.2 Core XP Values . 70

5.2.1 Communication . 70
5.2.2 Simplicity . 71
5.2.3 Feedback . 72
5.2.4 Courage . 73

Contents vii

5.3 User Stories . 73
5.4 The Twelve XP Practises . 73

5.4.1 The Planning Game . 74
5.4.2 Small Releases . 79
5.4.3 Simple Design . 79
5.4.4 Testing . 80
5.4.5 Refactoring . 81
5.4.6 Pair Programming . 82
5.4.7 Collective Ownership . 83
5.4.8 Continuous Integration . 83
5.4.9 On-Site Customer . 84
5.4.10 Coding Standards . 84
5.4.11 40-Hour Week . 85
5.4.12 System Metaphor . 85

5.5 What Is So Extreme About Extreme
Programming? . 86

5.6 Review . 86

6 Putting XP into Practise . 89
6.1 Introduction . 89
6.2 Planning XP Projects . 90

6.2.1 Playing the Planning Game . 91
6.2.2 The Goal of the Game . 91
6.2.3 The Strategy . 92
6.2.4 The Game Pieces . 92
6.2.5 The Players . 92
6.2.6 The Moves/Playing the Game . 93
6.2.7 Planning Your XP Project . 97

6.3 Test First Coding . 100
6.3.1 How to Write Tests First? . 101
6.3.2 What to Test? . 108
6.3.3 Confidence in the Test Suite . 108

6.4 Making Pair Programming Work . 109
6.5 Refactoring . 113

6.5.1 The Very Idea . 113
6.5.2 When to Refactor? . 114
6.5.3 How to Refactor? . 115
6.5.4 When Not to Refactor? . 115

6.6 Keeping on Track . 116
6.6.1 Small Releases . 116
6.6.2 Simple Design . 116
6.6.3 Continuous Integration . 119
6.6.4 Making Collective Ownership

Happen . 121
6.6.5 Getting an On-Site Customer . 122
6.6.6 Stand-Up Meetings . 122

6.7 Summary . 123

viii Contents

7 Agile Modelling and XP . 125
7.1 Introduction . 125
7.2 The Fit . 125
7.3 Common Practises . 126
7.4 Modelling Specific Practises . 127

7.4.1 Model with a Purpose . 127
7.4.2 Multiple Models . 129
7.4.3 Know Your Models . 131

7.5 XP Objections to Agile Modelling . 131
7.6 Agile Modelling and Planning XP Projects 132

7.6.1 Initial Project Planning . 132
7.6.2 Iteration/Release Planning . 133

7.7 XP Implementation Phase . 134
7.7.1 Refactoring . 135
7.7.2 Test-First Coding . 137
7.7.3 Simple Design . 138
7.7.4 Pair Programming . 140

7.8 Focus on XP . 141

8 Agile Modelling and XP Reviewed . 143
8.1 Introduction . 143
8.2 Review of XP/AM Practices . 143

8.2.1 The Planning Game . 143
8.2.2 Small Releases . 143
8.2.3 Simple Design . 144
8.2.4 Testing . 144
8.2.5 Refactoring . 145
8.2.6 Pair Programming . 146
8.2.7 Collective Ownership . 148
8.2.8 Continuous Integration . 148
8.2.9 On-Site Customer . 148
8.2.10 Coding Standards . 149
8.2.11 40-hour Week . 150
8.2.12 System Metaphor . 151

8.3 Other Factors . 151
8.3.1 Scalability . 151
8.3.2 Post Project Review . 151
8.3.3 Environment . 152
8.3.4 Daily Meeting . 152

8.4 Architecture . 152
8.4.1 Why Have an Architecture . 153
8.4.2 Characteristics of a Good Architecture 156
8.4.3 So What is an Architecture? . 156
8.4.4 Architecture Can Make XP Work 157

8.5 XP on Large Projects . 157
8.6 Where XP Works Best . 159
8.7 Summary . 159

Contents ix

9 Feature-Driven Development . 161
9.1 Introduction . 161
9.2 Incremental Software Development . 163
9.3 Regaining Control: The Motivation behind FDD 164

9.3.1 Feature-Centric Development 165
9.3.2 Timeboxing Iterations . 166
9.3.3 Being Adaptive but Managed . 167

9.4 Planning an Iterative Project . 168
9.4.1 Iterations, Timeboxes and Releases 168
9.4.2 Planning an Iteration . 171
9.4.3 An Aside on Planning within an FDD Project 173
9.4.4 Estimating the Cost of a Feature 173

9.5 Architecture Centric . 175
9.5.1 Why Architecture Centric? . 175
9.5.2 Architecture Defined . 175
9.5.3 Why Have an Architecture? . 176
9.5.4 Architecture Myths . 177
9.5.5 Plan Incremental Build of Software 178

9.6 FDD and XP . 178
9.7 Summary . 180

10 Planning a Sample FDD Project . 183
10.1 Introduction . 183
10.2 Initiating the Project . 183
10.3 The Overall Project Plan . 184
10.4 Planning the First Iteration . 186

10.4.1 Selecting Features for Iteration 1 186
10.4.2 Feature to Task Mapping . 187
10.4.3 Ordering Tasks for Iteration 1 190
10.4.4 The Gantt Chart for Iteration 1 191

10.5 Post Delivery . 192
10.6 Summary . 192

11 Agile Methods with RUP and PRINCE2 . 193
11.1 Introduction . 193
11.2 Agile Modelling and RUP . 194

11.2.1 Overview of the Unified Process 195
11.2.2 Lifecycle Phases . 197
11.2.3 Phases, Iterations and Disciplines 198
11.2.4 Modelling and the Unified Process 201
11.2.5 Agile Modelling and Documentation 204

11.3 FDD and RUP . 204
11.4 Agile Methods and Prince2 . 205
11.5 Summary . 209

12 Introducing Agile Methods into Your Organisation 211
12.1 Introduction . 211
12.2 Selling Agile Methods . 211

x Contents

12.3 Identifying a Suitable First Project . 212
12.4 Promoting an Agile Culture . 213
12.5 Building an Agile Team . 214
12.6 Adopting Agile Processes One at a Time 214
12.7 Managing Existing Processes . 215
12.8 Working with Distributed Teams . 216
12.9 Get Some Experience . 216

13 Tools to Help with Agile Development . 215
13.1 Introduction . 215
13.2 What Tools Do You Need? . 215
13.3 Eclipse: An Agile IDE . 216
13.4 Lightweight Modelling within Eclipse . 221
13.5 Building Applications with ANT . 223
13.6 Version Control with CVS . 226

13.6.1 So What Is It All About? . 226
13.6.2 Code Central Station . 226

13.7 Testing with JUnit . 227
13.7.1 JUnit within Eclipse . 228
13.7.2 Adding JUnit to an Eclipse Project 229
13.7.3 Using the Eclipse JUnit Wizard 230

13.8 Online References . 237

14 Obstacles to Agile Software Development 239
14.1 Introduction . 239
14.2 Management Intransigence . 239
14.3 The Failed Project Syndrome . 240
14.4 Developer Resistance . 241
14.5 Customer Opposition . 242
14.6 Contractual Difficulties . 243
14.7 Familiarity with Agility . 245

15 References . 247

Index . 251

1
Introduction

1.1 Why This Book?

Lets start of with a basic question “Why should you read this book?” The answer,
as I hope you will see, is because it brings together a range of the most popular
Agile Methods and presents them back to back allowing you, the reader, to gain
an insight into what it means to be agile, what agile methods are (and are not),
what Agile Modelling is and what XP (Extreme Programming) is. However, it goes
further than this and considers how some of the approaches can be used together,
how you can plan larger agile project (using a feature-driven approach) and how
you can introduce agile methods into your organisation. All of this is done in
a practical, no-nonsense manner that cuts through the hype and tells it to you
straight!

That is, you should read this book because it tells you how to actually plan,
organise and approach software systems in an Agile Manner. It does not try to sell
you an evangelical, purist or (pardon the pun) extreme view. Instead it introduces
the core concepts and methods in a concise and easy digested form. It also evaluates
how successful the core techniques, such as Extreme Programming (often referred
to as XP) and Agile Modelling can be, as well as what problems may be encountered.
It then shows how some of these problems have been overcome on real-world
projects by combining XP, Agile Modelling and Feature-Driven Development.

Without a book like this you can be left wondering what to do with Extreme
Programming on a large software project. You might find yourself asking “must
I always pair program if I wish to be agile?” or “should I do any design at all if I
want to be agile?” or “how can I plan a project to be delivered to a client who uses
a PRINCE 2 project management method when I am developing using an agile
approach?” With this book you will know!

1.2 A Bit of History

I first encountered Extreme Programming early in 2000 when I was running a
software development project, to create a data import and export utility for a
large logistics company. The tool to be created need to be interactive, supporting
data preview facilities, XML, Excel and database formats and to have excellent error

1

2 Agile Software Construction

reporting tools. Two of the developers on the project started talking about working
on some of the more difficult problems “Extreme” style. It was somewhat to my
surprise that this seemed to mean that they worked on the problem together, with
the two of them working on a single machine. Intrigued, I let them continue –
partly to see what happened and partly to understand what they were up to. The
result was that they dealt with the problem quickly and effectively. They continued
to work in this way for the remainder of the project. The delivered system not only
worked, but also was well constructed and very maintainable (as many subsequent
changes were required as the clients software requirements kept changing).

As my interest in this “Extreme” style grew, I found that many of the aims
and objectives of the agile movement fitted well with my own. I also found that I
could immediately identify with many of the issues being addressed and began to
incorporate them more and more into the projects I was involved in running. This
did not mean that we immediately adopted a 100% pure Extreme Programming
approach. Rather we gradually became more and more agile on a project-by-
project, and client-by-client, basis. One of the more obvious aspects of this to me
was that people became more comfortable with working together and in asking
for help, input or feedback.

Are the projects I work on agile? Yes, I believe they are. Do they use Agile
Modelling techniques – yes, I believe they do. Do we always use an Extreme
Programming approach – actually no, it depends on the project and the developers
involved, but then to me that is the point. We use each technique where and when
we feel it is appropriate – we are pragmatists rather than evangelical purists!

1.3 What Is Agile Software Development?

Agile software development is an attempt to put the software being developed
first and to acknowledge that the user requirements change. It is agile because it
can respond quickly to the users’ changing needs. Agile software development,
in general, advocates frequent and regular, software releases. This allows new
versions of the software to be released to users quickly and frequently. In turn,
users can respond frequently and quickly to these releases with feedback, changing
requirements and general comments (such as “that’s not what we meant!”). As
the releases are frequent, the time taken for the users to see the results of their
comments is short and they are then able to respond to the new version quickly.
This is particularly useful in a volatile environment, such as the environment of
the web during the late 1990s and early 21st century.

In turn, agile software development puts the software first, because almost any
activity undertaken must be to the benefit of the software that will be delivered.
For example, if I create a model of some problem domain, then that model is not
the actual delivered software, although it may help me to understand the problem
better, in order that I can write the executable software. However, if the only
use I make of the model is to help me understand the problem, then I shouldn’t
worry about updating it after the implementation varies from the design – at least
not until I need the model again. That way, the effort is focussed on developing
the software, rather than spending time on other supporting (but ultimately less
productive) activities.

1 · Introduction 3

1.4 Why Be Agile?

You may be wondering at this point “Why would I even want to be agile?,” “What
difference can agile software development make?” or “What has Extreme Program-
ming and Agile Modelling got to do with me?” The answer to these questions is in
this book, but the essence of the whole of the agile movement is the production
of working software systems, on time and within budget.

So why should you consider adopting agile development methods – the answer
is simple – because they can help you produce software within budget and agreed
timescales, that actually does what the users want! And we all want that right!

Of course, you might well argue that you have “seen it all before,” and that
this is what software engineering has been promising for decades. And you would
be right, but things change. Today we live in a fast-moving, uncertain world, in
which users’ requirements seem to be as changeable as the weather (here in the
UK) and software needs to have been delivered yesterday!

Traditional, single iteration, waterfall development approaches often can’t cope.
Other approaches have been proposed and new technologies created. Yet, still
software is late, or over budget, or both. Even when delivered it often has numerous
requirements removed or contains undesirable features/bugs.

Being agile doesn’t guarantee the removal of all bugs, nor does it guarantee an
easy ride, but it does help produce useful software within a project framework
that can adapt to changing requirements.

In the current climate, everyone needs to be Agile!

1.5 What This Book Is About?

This book is about exploiting as many features of the agile movement as possible
to enhance our software development processes. It is about selling you the concept
of agile software development. It is about how to make your projects agile. It is
about what tools you should use to become agile.

This book is about not rejecting anything out of hand just because it seems
radical, but also of not just accepting all of a concept just because the literature
says you should. It is about being realistic about what you can achieve in your
organisation/team/situation.

It is not a detailed in-depth presentation of any of the agile methods (there are
already very good books available that focus on each approach in depth – so why
write another one?), it is not a diatribe for, or against, any particular method, nor
is it a prescription for all of software development’s ills.

This book is thus a guide to the agile software development methods currently
available!

1.6 Implementation Languages

For the most part, this book is agnostic when it comes to a particular programming
language, as we are dealing with issues relating to programming and software

4 Agile Software Construction

development rather than the actual software development itself. However, there
are times when the book does refer to a particular programming language or to
a particular technology or tool used with one programming language or another.
In these situations, the book tends to use the programming language Java for
its examples. This is intentional – it is the environment that I am most familiar
with and within which all my training; mentoring and development work takes
place. This does not mean that if you are a hardened C++ developer, or a newly
trained C# developer, this book is not of interest to you – merely that the few
code examples will be less relevant. However, even here the issue may be blurred
as some of the UML diagrams happen to be generated from java code, but would
essentially be the same if they were generated from C#, for example.

1.7 The Structure of the Book

The remainder of the book has the following structure.

Chapter 2 : Agile Methods and the Agile Manifesto
This chapter covers the basics of the ideas and the philosophy behind the agile
movement. It explains what it is to be agile and presents a summary of the agile
manifesto. The manifesto, produced by the Agile Software Development Alliance,
expresses all the common philosophies that underlie the agile movement. As such
it is the heart of what it is to be agile! The chapter then describes the different
methods that are loosely grouped under the Agile banner including Agile Mod-
elling, Extreme Programming (XP), The Dynamic Systems Development Method
(or DSDM), SCRUM and Feature-Driven Development (FDD).

Chapter 3: Agile Modelling
Modelling has a great number of misconceptions associated with it. This chap-
ter first attempts to dispel these myths. It then introduces Agile Modelling. Agile
Modelling can be seen as the design-side equivalent of the coding-oriented Ex-
treme Programming. It tries to bring agile principles to the act of application
modelling.

Chapter 4: How to Become an Agile Modeller
In this chapter, we will look at how agile modelling can be implemented, what it
means to be an agile modeller and how agile modelling practices can be put into
practice.

Chapter 5: Extreme Programming (XP)
Extreme Programming or XP is part of the agile movement that focuses on the
writing of the software that will implement the system required by the end users.
This chapter introduces XP by presenting the four key values of XP. It then de-
scribes the 12 practices that essentially form XP. Note that XP is comprised of a
set of practices and is thus a very lightweight process and is actually more of a set
of guidelines than a methodology!

1 · Introduction 5

Chapter 6: XP in Practice
Chapter 5 describes in more detail the practices that make up XP; however, these
practices on their own provide very little in the way of guidance on how to run
an actual XP project. This chapter therefore describes how to implement XP on a
software project. It takes the XP practices and gives guidance on how to actually
make them work.

Chapter 7: Agile Modelling and XP
This chapter considers how to use Agile Modelling within an XP project. It also
considers how agile modelling and XP relate to one another.

Chapter 8: Agile Modelling and XP Reviewed
This chapter reviews agile modelling and XP in light of various experiences in-
cluding the authors’ own experiences. It also considers applying agile modelling
and XP to larger scale projects. It concludes by considering the best situations
within which to apply these techniques.

Chapter 9: Feature-Driven Development
This chapter discusses an agile development process based on Features. A Feature
is a schedulable piece of functionality, something that delivers value to the user.
It considers the role of FDD in planning agile development projects.

Chapter 10: An FDD Example Project
The aim of this chapter is to present an example of a project that employs agile
principles but that has been planned using an FDD approach.

Chapter 11: Agile Methods with RUP and PRINCE 2
This chapter considers how Agile Modelling and the Rational Unified Process can
fit together. It concludes by briefly discussing how agile methods and PRINCE 2
can work in tandem.

Chapter 12: Introducing Agile Methods into Your Organisation
In this chapter, we consider strategies for introducing Agile Development methods
into an organisation.

Chapter 13: Tools to Help with Agile Development
Life can be made a great deal easier if you choose the appropriate toolset to use.
In this chapter, we discuss some of the tools that can really help to simplify life on
an agile development project. In particular, we discuss the make-like tool ANT,
the use of version management software such as CVS (Continuous Versioning
System), unit testing software such as JUnit and IDEs such as Eclipse.

Chapter 14: Obstacles to Agile Software Development
This chapter discusses what obstacles may be encountered within an organisa-
tion, what problems may occur and the difficulties relating to agile development
methods. It also considers some strategies for mediating these issues.

6 Agile Software Construction

1.8 Where to Get More Information?

There are now many books available on various subjects within the agile movement
(there are even books, technologies and organisations that are trying to jump on
the agile bandwagon and make themselves appear agile). So which books might
you consider? In this section, I list the six or seven books that provide the best
coverage of the core aspects of Extreme Programming, Agile Model and Feature-
Driven Development (the main subjects covered in this book).

The definitive book on Extreme Programming is

� Extreme Programming Explained: Embrace Change. K. Beck, Addison-Wesley,
1999.

Although there are many other books on Extreme Programming, two standout
from a practical perspective, these are:

� Extreme Programming Applied: Playing to Win (The XP Series), Ken Auer,
Roy Miller, Addison Wesley - New York, 2002.

� Extreme Programming Installed, Ron Jeffries, Ann Anderson, and Chet Hen-
drikson, Addison-Wesley, ISBN: 0201708426, 2000.

A very good book that helps to introduce pair programming into an organisa-
tion is:

� Pair Programming Illuminated, Laurie Williams and Robert Kessler, Addison-
Wesley Professional, 0-201-74576-3, 2003.

The definitive Agile Modelling book is by Scott Ambler:

� Agile Modeling: Effective Practices for Extreme Programming and the Unified
Process, Scott W. Ambler, Wiley and Son, Inc., 0 471 20282 7, 2002.

Books relating to Feature-Driven Development include the following books.
These books focus on the use of the Together toolset, but include valuable in-
formation on helping to plan agile projects by basing project planning around
desired features.

� Better Software Faster, A. Carmichael, D. Haywood, Prentice-Hall NJ, 0-13-
008752-1, 2002.

� Java Modeling in Color, P. Coad, E. Lefebvre and J. De Luca, Prentice-Hall,
Englewood Cliffs, NJ, 1999.

1.9 Where to Go Online?

There is also a wealth of information available online. There are websites out there
that deal with the agile movement in general, with Extreme Programming, with
Agile Modelling, etc. Some of these are listed below.

1 · Introduction 7

Agile Movement in General
www.agilealliance.org Agile Software Development Alliance

Agile Modelling
www.agilemodeling.com Agile Modelling mailing list

Extreme Programming
http://extremeprogramming.org/
http://www.xpuniverse.com
http://www.pairprogramming.com/

2
Agile Methods and the Agile Manifesto

2.1 Introduction

In this chapter, you will be introduced to the concept, motivations, goals and
principles behind the Agile Movement. You will also learn what the common
features of all agile methods are. Following this, a brief review of a number of the
core agile methods currently available will be presented, before a brief summary
concludes the chapter.

2.2 What Is Agile?

Okay so what does “Agile” mean? And what are the methods that can be defined
as Agile in this context? This question has become somewhat muddied of late
as more and more people have jumped onto the Agile bandwagon. I have even
seen adverts on public television by Microsoft advocating that they are an “Agile
Organisation.” It is therefore worthwhile setting out our stall before continuing.

The Oxford Paper Back dictionary defines Agile as:

Agile adj. nimble, quick-moving

And possibly surprisingly for a computing term this actually reflects the primary
goal of the various methods that have been grouped under the term agile. That is,
they aim to be nimble and quick moving in response to changes in requirements,
to the people that comprise the development teams and to issues that arise during
the software development process.

These methods are not trying to be “nimble” just for the sake of it; instead they
have focussed on the fact that the primary purpose of software development is to
produce a working piece of software! This might sound like a major case of telling
your grand-mother how to suck eggs but just think about it for a moment. How
many times have you or a colleague stopped developing the actual software that
is to be delivered, to produce (for example) a set of view charts in PowerPoint
to give a presentation to the senior management explaining the progress you
have made, what you have achieved and what you will achieve during the next
period. Don’t get me wrong, I am not saying that such reporting is completely
unnecessary; however, it might not need some fancy PowerPoint slides in order to

9

10 Agile Software Construction

have achieved the same goal. And that is the essence, do what is useful, productive
and generally good for the development of the software and question anything
else that you are doing.

Of course, the necessity for other deliverables will depend on the nature of the
software being developed and the length of time it is likely to exist for. Take, for
example, a simple web application that will be used to register members for a
small club. This web application must take a member’s name and address, charge
them £10 for the privilege and send them a confirmatory email message. What
sort of documentation will this require? You might well argue that it will need at
least a requirements specification, a detailed design document, test specifications,
installation manual, etc. But what if this system is only intended as a stopgap
until the main all singing, all dancing web application is produced that includes
member only areas, a content management system, online database, etc. At this
point much of the documentation you may have developed may well be thrown
away as soon as the stopgap is phased out.

Possibly, you will argue that such a situation is unlikely to occur. My answer
to that is it has and indeed I was involved with the design and implementation of
this system.

So agile methods are methods that try to focus on the primary goal of software
development, i.e., the creation of working (defect-free) software. This is distinct
from “hacking” up code as quickly as possible, hence the inclusion of “defect-
free” in the previous sentence. Thus, agile also implies being both effective and
sufficient for the current situation. By this I mean:

� effective in terms of producing working, defect-free (as far as possible) soft-
ware,

� sufficient in terms of meeting its requirements both in the short-term and
in the long-term (for example, the documentation required to support a
long-lived project will be greater than for a short-lived one).

Note the use of the word “sufficient,” this also implies that it should not be over
sufficient. That is, engineering support into your software for things that might
never be needed is in general considered unnecessary.

So what is an Agile Methodology? Well, it is a method that tries to be responsive
to the needs of the software development process, that is based on practise and
experience, and that focuses on being effective and sufficient!

Okay, so that is a little bit vague, so in the next section we will look at the Agile
Manifesto that really coalesced the ideas being developed by a disparate group of
people.

2.3 The Agile Manifesto

There is a growing movement that promotes the use of an agile development phi-
losophy. This movement (see references at the end of this chapter) came together
in February 2001 to form the Agile Software Development Alliance (often referred
to as the Agile Alliance). They produced a manifesto that they hoped embraced
the philosophies that they commonly supported, and that they believed to help

2 · Agile Methods and the Agile Manifesto 11

produce better software. From this manifesto, they defined a set of principles for
Agile Software Development. The manifesto proposed the following values (very
briefly) summarised below:

1. Individuals and interactions over processes and tools.
This refers to the fact that it is the people involved and how they communicate
that typically has the largest bearing on the success (or failure) of a software
project. Yes, software development processes, methodologies, tools, etc., can
help but they are still not the overriding influence. Thus, you should encourage
the best people and group interactions.

2. Working software over comprehensive documentation.
There are times when (and I am sure I am not alone in this) you can feel that
all you seem to be doing is producing reams and reams of documentation.
Sometimes, this is aided (even determined) by the CASE tool you might be
using and sometimes it is merely the process being followed. However, at the
end of the day it is the software produced by a development project that will be
used by a user and not the documentation. Therefore, documentation should
not be a major goal in and of itself. Instead, it should be a supporting medium
for the actual product – the software.

3. Customer collaboration over contract negotiation.
Remember these are values – thus, time should be spent on working with cus-
tomers and in getting them involved in the software development rather than
on detailed contract negotiations. However, of course in the real world this
can be difficult, as although your direct clients may buy into this philosophy,
their legal and financial departments may not. For example, we have worked
with a number of clients where the legal (and/or financial) departments have
imposed a contract and associated negotiations because they want something
to hit us with, if things go wrong.

4. Responding to change over following a plan.
Finally, agile software development embraces change rather than saying “it’s
not in the requirements or the plan, so we can’t do it.” That is development
progresses in response to user feedback, rather than as a reaction to a fixed
plan. Note that does not mean that there is no plan and that planning isn’t
important – actually, it is very important but the project adapts itself to its
environment – that is it is agile!

Based on these value statements, a set of 12 principles have been identified. The
aim of these principles is twofold. First, they are intended to help people gain
a better understanding of what agile software development is all about. Second,
they can be used to help to determine whether you as a developer are following an
agile methodology or not. Note that these principles do not specify a method, etc.,
but rather define a set of guiding statements that any approach that wishes to be
grouped under the banner “Agile,” should conform to. Thus, agile methodologies
should conform to these principles:

1. Highest priority is to satisfy the customer.
2. Welcome change.
3. Deliver working software frequently.

12 Agile Software Construction

4. Business people and developers must work together daily.
5. Build projects around motivated individuals.
6. Face-to-face communication is best.
7. Working software is the primary measure of progress.
8. Promote sustainable development.
9. Continuous attention to technical excellence and good design enhances

agility.
10. Simplicity – the art of maximising the amount of work not done – is essential.
11. The best architectures, requirements and design emerge form self-organising

teams.
12. Introspection – teams should regularly review itself and its processes to try

and improve.

Some of the above may seem obvious and others may appear more contentious. In
general, they appear quite vague (“Welcome Change”). However, they have been
defined to help guide agile methodologies rather than to actually be a method-
ology. For example, an agile methodology should promote the frequent delivery
of working systems rather than a single big bang delivery. One way this can be
interpreted is that an iterative and incremental approach is better than the more
traditional waterfall approach to software production.

Of course, this last statement is a little simplistic and it would be more accurate
to state that the “Agile” movement has a desire to meet the needs of the sort of
rapidly changing and uncertain business world that we find ourselves working
within today. From this, agile methodologists have tried to devise methods that
move from

� heavyweight to lightweight processes,
� document-oriented to code-oriented objectives,
� predictive to adaptive methods,
� process-oriented to people-oriented activities.

2.4 What Are Agile Methods?

The common theme about agile methodologies is that they are all focussed on try-
ing to produce a working solution and be able to respond to changing user/client
requirements. Of course traditional development methods are also trying to de-
velop working solutions, but it is in the focus on changing requirements that the
core difference lies. For example, consider the following diagram.

This diagram tries to illustrate the difference in emphasis of agile methods
compared to more traditional methods. That is, in an agile method it is the time
available and the resources available that are generally considered to be fixed,
while the functionality is considered more flexible. Thus, the aim is usually to set
a fixed delivery date at which point something will be delivered and to prioritise
the functionality that must be implemented so that what can be implemented
will be implemented, but to acknowledge that not everything may be delivered. In
contrast, many software development projects have overrun because management

2 · Agile Methods and the Agile Manifesto 13

has considered the functionality to be fixed, but the time available and the number
of resources that can be applied are variable. There are of course situations where
all the functionality must be provided, but in many (most?) cases, functionality
varies between the must have, the nice to have, the may possibly be useful and
the never used at all! Thus, prioritising such functionalities can result in a leaner,
more effective solution being delivered on time and within budget.

For example, a fundamental assumption of DSDM (outlined below) is that
nothing is built perfectly first time, but that a usable and useful 80% of the
proposed system can be produced in 20% of the time it would take to produce
the total system. The implication being that the remaining 20% may never be
required, or at worst will be required in later deliveries.

Functionality

Time and Resources

Time and Resources

Functionality

Traditional
fixed functionality

approach

Agile
methodologies

Fixed

Flexible

It is interesting to relate a recent project that I was involved in that was started
originally in 2002. The original specification led to an initial green field proto-
type being built. This prototype convinced users and management that a system
similar to this was needed but that it would change in significant ways. A detailed
requirements document was drawn up and the functionality prioritised. An initial
time period for the first delivery was determined and the development started.
This resulted in a system being delivered on time and at the budget originally
stated. Following this, the functionality that had not yet been implemented was
re-evaluated. Interestingly, there were many changes to the priorities of various
features/functions at this time. Some of the must haves that could not be imple-
mented within the original time scales slide down and (eventually over the next 2
years) dropped off the list altogether.

This is not to say that the lists were wrong initially – on the contrary, given the
users understanding of their own requirements at that time the functions were
ordered appropriately. However, once things got going and incremental deliver-
ies were made, and real end users started working with the tools, the require-
ments both changed and were understood better. In addition, actual working

14 Agile Software Construction

patterns altered as a result of the new software that lead to different end user
needs.

Because an agile methodology was being followed (the management of which
was based on Feature-Driven Development (FDD)) we were able to respond to
these changes easily, resulting in an extremely high quality of service to the client.
That is, they got what they actually needed, when they wanted it and for a mutually
agreed cost. The software was even put forward as an example of good practices
within the client organisation.

Okay, so that is the theoretical part, what are these so-called Agile Methods?
Without trying to provide a complete list of every possible method that might try
and bring itself under the umbrella of the term Agile, there are five core methods
being worked on and with at the present time. These are Agile Modelling, eXtreme
Programming (or XP), DSDM, SCRUM and FDD. I will not try to cover all of
these in depth within this book, instead I will try to provide a flavour of each
approach here and focus on three of these methods later in the book.

2.5 Agile Modelling

Agile Modelling applies the philosophy of the agile movement to the software
modelling process. It tries to find an appropriate balance between too little mod-
elling, and too much modelling, at the design stage. That is, the point at which
you have

modelled enough to explore and document your system effectively, but not so much that
it becomes a burden (Ambler, 2002).

It is certainly not a methodology in its own right and rather more of an approach
or philosophy towards the modelling stage of a project. As such it can be used as
the modelling approach adopted within, for example, a RUP project. Indeed, it
might be clearer to state that Agile Modelling provides guidelines on how to create
effective models and how to be an efficient modeller. This does not necessarily
mean that less modelling will be performed while adopting Agile Modelling rather
that the models that are produced are those required for useful, necessary purposes.
Like other Agile Methods, it is trying to promote lightweight processes, in this
case within the modelling arena (as opposed to the programming arena with XP).
To this end it has three main goals:

1. The definition and promotion of a set of values, principles and practices that
help to produce the appropriate models.

2. Guidance on how to apply modelling to an agile software development.
3. Guidance on how to apply agile modelling to other software processes (such

as RUP).

This results in the concept that an agile model is just good enough for its purpose
(of course non-agile models may be “just good enough for their purpose” but
often they provide far more information than will ever be useful or indeed used at

2 · Agile Methods and the Agile Manifesto 15

a later date). This is defined in terms of a set of criteria that an agile model should
meet, these are:

� Agile models provide positive value. That is, is there a real need for the model,
will it help in the general aim of producing the final deliverable software? If
not, then within the Agile Modelling philosophy it is not required.

� Agile models fulfil their purpose (and no more). For example, if that purpose
is for John to explain to Steve and Dave how their code should integrate
with his, then a drawing on a white board may be good enough to serve its
purpose (so don’t use a heavyweight tool such as Rational Rose to do this!).

� Agile models are understandable to their intended audience but not necessarily
to everyone. That is, the level of detail and the content needs to be appropriate
for Steve and Dave, but not necessarily to any software engineer from any
other project.

� Agile models are sufficiently accurate. Recently, I had to explain how the Java-
Mail API worked to some colleagues. I was doing so in order that they could
have a general understanding of what our software was doing (but they would
not be involved in the actual software development, rather they would be ad-
ministering the email accounts). As it had been a while since I had last looked
at the JavaMail API, I gave then an overview in which I got the general ideas
across (using a mixture of UML like diagrams and flow charts). I was even
unsure of the exact names of some of the classes but I still got the point
across!

� Agile models are sufficiently consistent. If one model has more detail in than
another, so what! As long as they are both understandable by their target
audiences it does not matter.

� Agile models are sufficiently detailed. For example, when John explains to
Steve and Dave about the structure they need to integrate with, many details
not relevant to them can be left out – it may be sufficient merely to get the
general concepts across.

� Agile models are as simple as possible. The less information within a model,
the easier it is for the reader to absorb. Within UML, there are a wide range of
notational elements that can be applied to most diagrams. However, very few
UML diagrams employ as many of these as is possible and in my experience
very few of them need as many as they have.

As such Agile Modelling is far more of an art than a science or indeed a prescriptive
design method! In addition, it does not claim that documentation is unnecessary –
indeed models are a form of design documentation and with any design model
there are elements that cannot be captured easily within diagrammatic models.
However, the documentation associated with the design of the system can be asso-
ciated, where appropriate, with agile models and can be focussed on the models.
Thus, the concept of Agile Documentation is born, such that the documentation
being created meets the overall goals of agile modelling, namely, that is, as simple
as possible, as minimal as possible, has a distinct purpose but is as effective as
possible for the intended target audience.

16 Agile Software Construction

The principles of Agile Modelling are supported by a set of core and supple-
mentary practises. These practises (if adopted) help to achieve an Agile Modelling
environment.

We will return to Agile Modelling in more detail in Chapters 3 and 4.

2.6 XP: eXtreme Programming

Extreme Programming, or as it is more commonly known XP, was originally
designed as a way of supporting small development teams working within uncer-
tain and changing requirements. That is, it was a response to many of the more
traditional heavyweight approaches that are often overkill for small software de-
velopments. However, it was not an attempt to throw everything away and just
program (which is a common misinterpretation of XP). Rather, XP was designed
as an approach based on software engineering principles, but focussed on the
timely delivery of software that meets users’ requirements (rather than on the
sometimes over bearing processes that surround the development of software).
An important aspect of XP is the empowerment of the actual developers – they
should be able to react immediately to changing customer requirements, even late
in the development life cycle.

XP also places great emphasis on the software development team and teamwork.
The team, in turn, incorporates management, technical personnel and end users
all cooperating towards the common good. It takes as one of its aims that teams
communicate and constantly pay attention to all the details necessary to make
sure that the software being developed matches the user requirements, to help to
produce quality software.

Underlying XP are four basic principles, these are:

� Communication – it is good to talk (particularly, between users and develop-
ers).

� Simplicity – keep it simple and grow the system as and when required.
� Feedback – let users provide feedback early and often.
� Courage – to go with such an approach.

These four basic principles have led to the following key ideas presented
within XP:

Code in pairs. This is probably the thing that people first hear with relation to XP.
The idea is that all software is developed in pairs (i.e., with two programmers at
one screen). The concept is that if code reviews are good, because they force at
least one other person to consider your code, then constantly working in pairs
results in constant reviewing of code and feedback between the two developers.

Stay in contact with the customer. For example, place a customer representative in
the team, so that you have access to them all of the time. Meet regularly with
the customer to give information and receive feedback.

Create tests before coding then test heavily. Developers should write the unit tests
before the code to be tested. Part of the argument is that if you can’t write the test

2 · Agile Methods and the Agile Manifesto 17

(i.e., don’t know what the inputs and outputs should be), then you shouldn’t
be writing the code. You should then automate testing so that you can regularly
re-run the tests to make sure that nothing that has been done breaks earlier
results.

Short iterations. Each iteration should be relatively short allowing for rapid and
frequent feedback. Thus, a minimal system may be produced and possibly even
put into production quickly and the system will grow in whatever directions
prove most valuable.

Keep it simple. Start projects with a simple design that can evolve later as required by
future iterations. This removes unnecessary complexity from early iterations.
It also removes the need to code in additional functionalities believed to be
required by future iterations, but which may actually never be needed.

Don’t anticipate: code for current needs. That is, don’t over-engineer solutions based
on what they may one day need to do, rather focus on what they need to do
now and leave tomorrow’s functionality to tomorrow.

Collective ownership. Everyone within the team owns the software and has respon-
sibility for it. When something goes wrong, no one should ever consider it not
to be his or her problem because Bill wrote that piece of code. In turn, XP does
not support a culture of blame and recrimination – everyone is responsible for
all the code. As a result of this, everyone is responsible for fixing a problem
when they find it rather than ignoring it.

2.6.1 The XP Project Lifecycle

We have now briefly considered the primary goals and principles of XP, but what is
XP? Is it just programming in pairs? No, XP does provide a software development
lifecycle model as well as guidelines on the organisation of a software development
team. The XP lifecycle is presented in Figure 2.1.

2.6.2 User Stories

User stories are similar in some respects to Use Cases from the Rational Unified
Process in that they aim to capture how the user will use the system. However,
they are written by the users themselves and not by the development team. Note

User Stories

Architectural
Spike

Release
Planning

Spike

Iteration
Acceptance

Tests
Small

Releases

Requirements

Test Scenarios

Bugs

Next Iteration

Customer
Acceptance

Release
Plan Release

System
Metaphor

Unresolved
Problem

Resolved
Problem

Fig. 2.1 XP lifecycle.

18 Agile Software Construction

that the users should not be limited to describing just the user interface. Rather
the user stories should describe how the user would use the system to accomplish
something.

It is worth noting that User Stories are not detailed requirements. These will
be obtained during the iterations, when and if the aspect of the system covered
by a particular user story is to be implemented. Instead, User Stories should only
be detailed enough to allow a reasonable estimate to be made of the time taken to
implement them under ideal conditions for the planning meeting.

They should be short (e.g., about three sentences long) and should use the
terminology of the user and not the terminology of the software development
team. These user stories should feed into the release-planning meeting and to the
creation of the user acceptance tests.

2.6.3 Architectural Spike

A Spike in XP terms is an attempt to reduce the risk associated with an unknown
area of the system, technology or application domain. A Spike may involve some
investigation, research and possibly some software to evaluate or elucidate the
problem. The result of most explorations is usually not good enough to keep
and so should be thrown away. Early on the overall architecture of the system to
be developed is an important issue that needs to be resolved. Thus, at this stage
research and analysis of the architecture to use should be carried out and fed into
the release planning meeting. Other spikes are used during the project-planning
phase to determine unresolved issues.

2.6.4 Release Planning

A release-planning meeting is used to create the release plan, which lays out the
overall project. That is, the release plan indicates which user stories will be imple-
mented and in which release this will happen. It also indicates how many iterations
are planned and when each iteration will be delivered. This is done by negotiation
between the interested parties using estimates derived from the user stories. The
estimates are produced by the technical members of the team potentially with
input from the users. The users prioritise the user stories possibly with input from
the technical team members. From this, the timescales for the project, the delivery
dates of various iterations, and the final system delivery are all negotiated. If it is
found that management or users are unhappy about the proposed delivery dates,
then one or more of the features of the system, the resources available or the
time taken must be modified until all participants are happy. Note that individual
iterations are planned just before the iteration commences, not in advance.

2.6.5 Iterations

Each iteration within the project adds to the agility of the development team. That
is, at the start of each iteration changes can be made to what will be done and
when it will be done. The shorter the iteration, the quicker the development team
can respond to changes (indeed within XP it is recommended that iterations last

2 · Agile Methods and the Agile Manifesto 19

only a matter of weeks). At the beginning of each iteration, an Iteration Planning
meeting is held to determine exactly what will happen within that iteration (such
as what programming tasks there will be and when they will be done). Such
just-in-time planning is considered an easy way to stay on top of changing user
requirements. If, however, it looks like the iteration will not manage to achieve
all that was planned for it, then further iteration planning meetings should be
called during the iteration to respond to these concerns. These meetings might
need to re-estimate current and future tasks and determine what can and can’t be
achieved. The overriding concern here should be to concentrate your efforts on
completing the most important tasks as chosen by your users rather than having
several unfinished tasks chosen by the developers.

2.6.6 Acceptance Testing

The acceptance tests are created from the user stories, written at the start of
the project. Each iteration implements one or more user stories; these stories
will be translated into a series of acceptance tests during the iteration. To do
this, the customer must specify scenarios to test whether a user story has been
correctly implemented. A story is not limited to one acceptance test and may be
related to many acceptance tests (depending on the complexity of the scenario).
Interestingly, it is the users who assess the results of the acceptance tests and
reviewing test scores to decide which failed tests are of highest priority. Acceptance
tests are also used as regression tests prior to a production release. Thus, Acceptance
tests should be automated so they can be run often. Indeed in each iteration, all
previous Acceptance tests should be run to ensure that nothing has been broken.
Indeed, contrary to some popular misconceptions, XP has Software QA at its heart
and encourages the QA team to be very closely related to the development team.

2.6.7 Release

XP promotes the concept of “small releases” and “release often.” The release-
planning meeting should identify meaning “chucks” of system functionality
that makes business sense in relation to the users and to the state of the sys-
tem at various intervals. These meaningful releases should be made available
to users when available. This will allow early and frequent feedback from the
users rather than relying on the big bang approach and then worrying about the
consequences.

2.6.8 Why Is XP Controversial?

XP has had some mixed receptions in the press and within the wider developer
community. Why is this? In the following brief section, we will try to answer some
of the issues that have been raised about XP.

XP is a hackers paradise or at the very least encourages hacking. Some people be-
lieve that XP is all about programming with little or no emphasis on design,

20 Agile Software Construction

documentation or indeed testing. Yet, the reality is that XP tries to focus the
developer on their core activity (writing code) and not to get bogged down
in less relevant tasks. However, the key here is “less relevant tasks.” XP does
not mean that there is no need to document, or to design or indeed to test. In
fact testing is considered to be extremely important within XP and design and
documentation should be carried out but when, where and as required, rather
than just mindlessly created.

XP Programmers get to work in pairs! So that means that we now need double
the number of programmers and that one programmer can just ride along
on the coat tails of the other programmer? Yes? Well no! The idea is that two
programmers working on the code together will produce more effective code,
quicker and with less bugs in, because they are monitoring what each other are
doing, and are both analysing the problem – i.e., two heads are better than one.

XP doesn’t force team members to specialise and become analysts, architects, pro-
grammers, testers and integrators – every XP programmer participates in all of
these critical activities every day. Actually this is true, but is not necessarily a bad
thing, particularly in small software development teams where it can be very
useful to have everyone familiar with all aspects of the development process.

XP doesn’t conduct a complete up-front analysis and design of the system. Rather an
XP project starts with a quick analysis of the entire system, and XP program-
mers continue to make analysis and design decisions throughout development.
This is particularly troublesome for those entrenched in more traditional (and
particularly waterfall based) development models. But then the point of XP
is that it is agile, and that what might be thought to be needed upfront may
change during the lifetime of the project!

XP promotes the development of the systems’ infrastructure and its frameworks as
you develop your application. That is, you do not develop the core of the system
upfront. The intention is that you do not do needless work early on; rather you
focus on delivering business value right from the start. The counter argument
to this is that you may end up with an amorphous mess or need to carry
out extensive refactoring as the project progresses. Of course, this may still
be the case even if you attempt to create an appropriate infrastructure and
set of frameworks early on as the system may evolve extensively during its
lifetime.

XP does not encourage the creation and maintenance of implementation documen-
tation. Instead within an XP project communication occurs face-to-face, or
through efficient tests and carefully written code. However, code is not self-
documenting and some documentation is always, and will always, be needed.
However, only that which is in this category should be created.

XP is not a complete methodology. It is a lot like a jigsaw puzzle. There are many
small pieces. Individually, the pieces make no sense, but when combined to-
gether a complete picture can be seen. This is a significant departure from tra-
ditional software development methods, indeed XP is not really a fully fledged
development method, rather it is a development philosophy with proposed
procedures, approaches and strategies.

We will return to eXtreme Programming in more detail in Chapter 5.

2 · Agile Methods and the Agile Manifesto 21

2.7 DSDM

DSDM or The Dynamic Systems Development Method provides a framework
of controls and best practice for Rapid Application Development (RAD). It is
particularly suitable for application development projects that need to develop
complex business solutions within tight timeframes.

A worldwide consortium of systems developers initially designed (and indeed
are still evolving) DSDM (now in Version 4.1). Their goal was to produce what at
the time they referred to as a RAD methodology which has evolved into an Agile
Method model that is time, quality and cost sensitive, producing deliverables
quickly and accurately – rapid and right. Since its inception in 1995, more than
20,000 practitioners have been trained and thousands of developers have used
DSDM successfully.

As with a number of the approaches described in this book, in DSDM, time
is fixed for the life of a project, and resources are fixed as far as possible. This
means that it is the requirements that will be satisfied that are allowed to change.
(For the moment, we will ignore the implications of this on contracts based on
requirements specifications that are often the norm in the software industry).
A central tenant of DSDM is that “high-quality demands fitness for purpose as
well technical robustness” rather than the need to match every requirement as
described in the requirements document to the nth degree (not least because
many requirements documents are at best flawed).

DSDM is based on nine overriding principles, these are:

1. Active user involvement is imperative.
2. The team must be empowered to make decisions.
3. The focus is on frequent delivery of products.
4. Fitness for business purpose is the essential criterion for acceptance of

deliverables.
5. Iterative and incremental development is necessary to converge on an accurate

business solution.
6. All changes during development are reversible.
7. Requirements are base lined at a high level.
8. Testing is integrated throughout the life cycle.
9. Collaboration and cooperation between all stakeholders is essential.

Some of these may seem obvious (such as the user being actively involved in the
development process). However, it is not exceptional for a development team to
be given a requirements document and to work solely from this and never to talk
to the actual end users. Thus, a major impediment to the understanding of those
requirements exists – first hand experience.

To emphasis this particular aspect of DSDM, the key users within a DSADM
project are know as Ambassador Users. Ambassador Users are so called because
they have an ambassadorial role between the project team and the actual end
users. They promote two-way communication and compromise between the end
user community and the project development team.

22 Agile Software Construction

Of course, they are not the only users who should be involved, not least as they
may only have a view of part of the whole project. Rather they help to identify
other users who should become directly involved as and when necessary. If this is
not practical, then they must represent the input and ideas of other users. They
should not have a passive role in the project as they should be involved not only
with determining the features the system must include but also in the testing,
direction and overall solution produced.

However, one or more Ambassador Users still cannot provide the sort of direct
and rapid feedback that getting a group of users in front of the development team
or an early iteration of the tool can produce. To this end DSDM promotes the use
of Facilitated Workshops. These workshops when used properly can be a useful
tool for effecting cultural change in an organisation because they promote buy-in
from and empowerment of participants. When used effectively, they can set the
tone for the whole project. However, it is up to the project members themselves
to decide whether a workshop is necessary, or whether another technique, such
as interviewing or research is more applicable.

The actual DSDM lifecycle is broken down into seven different phases, these are:
Pre-Project Phase, Feasibility Study, Business Case Study, the Functional Model
Iteration (FMI), the Design and Build Iteration (DBI), the Implementation Phase
and the Post-Project Phase. These are illustrated in Figure 2.2.

The first three phases (namely, the Pre-Project, Feasibility and Business Studies
phases) are done sequentially in order. These phases set the ground rules for the
rest of development process allowing users and teams to understand the world

Pre-Project Phase

Feasibility
Study

Business
Study

Functional Model
Iteration

Design & Build
Iteration

Implementation

Post-Project Phase

Fig. 2.2 DSDM lifecycle.

2 · Agile Methods and the Agile Manifesto 23

within which the application must execute as well as what will be expected of the
end product.

The Feasibility Study phase is expected only to last a few weeks. The output
of this phase is a “feasibility report” that assesses whether or not to use DSDM
for the particular project. It should also consider issues surrounding the people
and organisations involved, and define the general scope of the project and its
objectives. This phase should also produce an outline plan for the development
of the end product.

The Business Study phase of the project should have three outputs; these should
be the Business Area Definition (BAD), the System Architecture Definition (SAD)
and the Outline Prototyping plan:

� Business Area Definition. Identifies the high-level requirements and provides
a process description of the end product.

� System Architecture Definition. Sketches out the architecture of end system.
Note that it is likely that this will evolve over the life of the project.

� Outline Prototyping Plan. This states the prototyping strategy to be adopted
for the development of the end product.

The core phases of the DSDM are the FMI, the DBI and the Implementation
Phase.

The FMI Phase involves:

� Analysis of the features to be designed and implemented.
� The production of the Functional Model. This is the primary output of this

phase. It may include prototype code as well as analysis models.
� Coding and prototyping. Prototypes may be used to help improve the analysis

or understanding of the system. These prototypes may continue to evolve
(particularly in the next phase) until the quality level achieved is high enough
that they can be used in the delivered system.

The DBI Phase involves:

� Designing and Building the features to be implemented during this phase.
This involves reviewing the designs produced so far, the functional proto-
types, as well as the creation of code to implement the required functionality.

� The primary output of this state is the tested system. This system must meet
all the requirements selected as essential in the particular iteration being
implemented.

The Implementation Phase involves:

� The transfer of the completed system from the development environment to
the production environment.

24 Agile Software Construction

� The provision of other deliverables such as User training, the creation of the
User Manual and the Project Review Report. If issues arise, then the project
can be reiterated back to the appropriate phase.

The core three phases, the FMI, the DBI and the Implementation Phase are ex-
pected to be iterative and incremental. However, exactly how these three phases
overlap and merge is left to a particular project to decide.

After the project has delivered the end product, the project team can be dis-
banded and the Post-Project activities initiated. This phase may cover such di-
verse activities as providing a help desk for users to ensure that the product
operates effectively and checking that the expected business benefits have been
achieved.

Within the two main product creation phases (the FMI and DBI) the primary
mechanism used for handling the uncertainty considered inherent in the devel-
opment process is the timebox. In any project, there is a fixed completion date,
which provides an overall timebox for the work to be carried out. DSDM refines
the concept of timeboxing by nesting shorter timeboxes of 2–6 weeks within the
overall time frame.

Each timebox will typically pass through three phases.

� Investigation – a quick pass to see whether the team is taking the right
direction.

� Refinement – to build on the comments resulting from the review at the end
of investigation.

� Consolidation – the final part of the timebox to tie up any loose ends.

Each timebox has an immovable end date and a prioritised set of requirements
assigned to it. Some of these are mandatory, some are of a lesser priority. The
mix is essential as if all the requirements are mandatory, there will be no room
for manoeuvre when things don’t go perfectly to plan or when new requirements
surface. The prioritisation of the requirements throughout the timebox is checked
and possibly reassigned using the MoSCoW Rules.

The MoSCoW rules provide the basis on which decisions are made over the
entire project, and during any timebox. As timeboxes are fixed, the deliverables
from the timebox may vary according to the amount of time left. Essential work
must be done – less critical work can be omitted. So, the MoSCoW rules are
applied. MoSCoW stands for:

Must haves: fundamental to the projects success
“on time”
Should haves: important but the projects success does not rely on these
Could haves: can easily be left out without impacting on the project
“on budget”
Won’t have this time round: can be left out this time and done at a later date.

A clear prioritisation is developed ensuring that the essential work is completed
within the given timeframe.

2 · Agile Methods and the Agile Manifesto 25

Recent trends within the DSDM community have been to combine DSDM with
XP to gain the benefits of DSDM’s project management framework and business
focus with XP’s high efficiency and high-quality development practices, what has
been called Enterprise XP or EXP (Craddock, 2002).

2.8 SCRUM

SCRUM (Schwaber and Beedle, 2001) aims to manage and control the production
of software using iterative, incremental and lightweight processes (that is less
intrusive processes). It does this by wrapping up existing methods (such as RUP)
and agile methods (such as XP) together to provide a workable agile development
methodology.

One of the interesting aspects of SCRUM is that actually it aims to help with
the production of a “product” of which software is just one example. The benefits
put forward by the proponents of SCRUM are:

1. The management and control of development work in an agile manner.
2. It explicitly acknowledges that requirements may be changing rapidly within

its iterative and incremental approach to product development.
3. It is possible to still use existing engineering practices within SCRUM (which

may help facilitate the introduction of agile methods into an organisation).
4. It is an inherently team-based approach and helps to improve communications

and co-operation.
5. It scales from small projects up to very large projects.
6. It helps to identify and then remove any obstacle to the smooth development

of the end product.

At its core SCRUM is a set of rules, procedures, and practices that are all inter-
related and that work together to improve the development environment, reduce
organisational overheads and ensure that iterative deliverables match the end users
requirements. This is illustrated in Figure 2.3.

SCRUM is based on current process control theories and specifically aims to
produce the best end result, given the current resources and time available. Note
that it does not aim to produce the best possible piece of software given unlimited
resources – rather it is based within the realities of the modern world and will help
to produce the best that can be done given the situation within which it is applied.
This may mean that some functionality, for example, is sacrificed (especially if that
functionality is low priority functionality). Note that, as well as having an iterative
cycle of only 30 days between iterative deliveries, it also employees daily reviews.
These reviews should be short (of, for example, 15-min duration), and should force
team members to address the basics of the process, namely they should consider:

1. What has been done by team members since the last meeting.
2. Is there anything causing a problem? Are there any obstacles to completing

their tasks?
3. What will each team member do before the next meeting?

26 Agile Software Construction

Log of Prioritised product
features

Sprint Backlog:
Feature(s)
assigned to
this sprint

Completed new
functionality is demonstrated

at end of current
sprint

30 days

every day

Daily review meeting

Elucidate the
tasks in detail

Fig. 2.3 SCRUM.

Over 50 organisations have successfully used SCRUM in thousands of projects to
manage and control work, apparently with significant productivity improvements.
These projects have ranged from financial products, through medial applications
to internet solutions.

An interesting observation relating to SCRUM is that it can be viewed as a
process that helps to wrap up existing (potentially software) engineering practices
within a controlled iterative process. In doing so, it provides values, procedures
and rules that can help introduce a more dynamic and responsive development
process (in other words, it helps other processes to become agile!).

SCRUM can be applied from the start of a project or can be introduced during
a product’s lifecycle, particularly if a project is facing difficulties in completing all
tasks and some form of prioritisation of tasks is required.

2.8.1 Feature-Driven Development

We have already considered four different methods which all consider themselves
to be agile, why look at another? The answer lies in planning. The big advantage
of using a feature-centric approach is the potential for managing an agile project,
for handling the uncertainties that an agile approach introduces, for getting to
grips with monitoring and reporting on the project. In many (most) situations,
management will still wish to monitor the progress of a software project against
some planning element and will still want to be re-assured that at the end of the

2 · Agile Methods and the Agile Manifesto 27

day they will receive a working system. Although all of the above are primarily
aimed at producing a working system, various project stakeholders still want to
know what is going on.

A feature is a schedulable requirement associated with the activity used to
realise it. These requirements may be user related requirements (i.e., be able to
open a bank account), application behaviour requirements (make a backup every
10 min) or internal requirements (provide the ability to turn on debugging for
system support). Each feature has a priority and a cost associated with it (for
example, an estimate of the amount of person effort required to design, implement
and test that feature). Thus, a feature mixes units of requirements with units of
management. In addition, features should have the following attributes:

� Features should be small and “useful in the eyes of system stakeholders.”
� Features can be grouped into business-related groupings (called variously

feature sets or work packages).
� Features focus developers on producing elements within the system that are

of tangible benefits to system stakeholders.
� Features are prioritised.
� Features are schedulable.
� Features have an associated (estimated) cost.
� Can be grouped together into short iterations (possibly as short as two weeks).

As can be seen from this list, features have many similarities with the goals and
principles of the agile methods described earlier. Indeed you could use an approach
such as Agile Modelling when designing each feature while applying XP principles
to the implementation step of each feature.

This brings us back to the question why to consider feature-centric design. The
reason for considering yet another method is that iterative lifecycles (such as those
promoted by agile methods) tend to be more complex than linear one. They tend
to:

� require more planning and re-planning,
� more assessment of where the project has got to go,
� more judgement of what should happen now,
� more monitoring of progress,
� be able to respond more quickly to the current situation (which potentially

leads to more planning, etc.).

This involves asking some of the following questions as iterations progress:

� How are we progressing relative to the overall goal of the system?
� What are the priorities now and how have they changed?
� What issues and risks does the project now face?
� How can the issues and risks be addressed or mitigated?

Given that agile approaches are trying to keep things simple (or at least as simple
as possible without undermining the overall goal of producing a working system),
we need some way of managing the uncertainty inherent in an agile approach.

28 Agile Software Construction

Feature-centric management of agile projects offers this element of control. In
FDD, Coad (1999) and Palmer and Felsing (2002) present a five-step process that
outlines how a feature-centric approach works, these five processes are:

Process 1: Develop an overall model of the domain and create an initial feature
list.

Process 2: Build a detailed, prioritised feature list.
Process 3: Plan by feature.
Process 4: Design by feature.
Process 5: Build by feature.

We can elaborate on that by considering an iterative feature based lifecycle. This
is presented in Figure 2.4.

In the diagram above, the flow illustrates the following steps:

1. First identify a prioritised feature list. This can be done by considering the
systems’ requirements. These can be produced in whatever manner is appro-
priate. For example, through use cases, a formal requirements specification or
user stories. What is required is that they are elaborated sufficiently to allow
prioritisation and an initial cost estimate to be associated with them.

2. This initial feature list is then used to create a plan of the iterations to be
undertaken. Each iteration should have one or more features associated with
it and should not be too long. Each iteration should have a timebox associated
with it that specifies when it starts and when it finishes.

3. Before each iteration starts, the iteration should be planned in detail. This
involves determining which features are still relevant for that iteration, any
revised priorities and an ordering to the features.

4. Once a iteration starts, each iteration is addressed in turn based on their
priorities. At any one time, one or more features will be worked on depending
on the size of the feature and the resources available (note that no assumption
is made here about how many people will be needed to implement a feature,
there could be one developer per feature, two per feature or variable depending
upon the step within the feature that is currently being addressed).

5. The iteration stops when the timebox finishes. At the end of the iteration, the
current version of the software is tested to ensure it does what it should.

6. If this is the final iteration, then the final version of the system is delivered
(if it is not the final iteration, then the current system may still be delivered
to end users for early and frequent feedback). This is possible as each feature
should be useful in the eyes of the various project stakeholders in their own
right.

Thus, being feature-centric allows control to be regained over the agile develop-
ment process as:

� features combine requirements with planning,
� timeboxes provide a structure to the plan and define how much time is

available to implement the features,

2 · Agile Methods and the Agile Manifesto 29

Detailed Prioritised
Feature

list

Plan iterations /
Select features
Each iteration

Revise
Features for current

iteration

Analyse Feature
in detail

Design
Feature

Implement
Feature

Test
Feature

time
up?

Acceptance Testing
of iteration

final
delivery

due?

Build feature

An iteration

Fig. 2.4 Iterative feature based lifecycle.

30 Agile Software Construction

� each iteration identified the features to be implemented based on the timebox
and the current set of features and their priorities.

We will return to feature-centric approaches again in Chapter 9.

2.9 Summary

So what has this chapter shown us? First, that the various approaches within the
agile movement have a common set of themes, namely:

� keep things simple,
� focus on producing the end product (i.e., the working software system),
� keep processes lightweight and
� remain responsive to changing requirements.

Second, that the various methods considered have different focuses and different
emphasis. For example:

� Agile modelling focuses primarily on the design side of software develop-
ment,

� XP not surprisingly focuses on the programming side of things,
� Feature-centric focuses on the planning side of a project.

Thirdly, that the various methods are not contradictory or even competitors.
Rather that they can often supplement and support each other. For examples, a
particular project may adopt a feature-centric approach, utilising agile modelling
principles and practices with XP-oriented implementation steps. Indeed, this is
exactly what I have done on a number of projects.

Finally, this chapter has illustrated that agile methods are not the hackers’
paradise that some believe them to be. They are all grounded in sound software
engineering principles and all have a significant focus on testing and quality
assurance (after all the primary aim is to produce a “working” software system).

In the remainder of this book, we will return to a number of the approaches
described above and will consider how an agile project can be implemented, run
and supported by the software tools currently available.

3
Agile Modelling

3.1 Introduction

In this chapter, we will first consider some common misconceptions relating to
models and model-based design. Once we have dispelled these misconceptions,
we shall delve deeper into agile modelling. We will consider the attributes of agile
models as well as what agile models look like and when they should be updated.

3.2 Modelling Misconceptions

Before discussing Agile Modelling, it is worth reconsidering some modelling myths
and misconceptions that need to be clarified. These have a bearing on Agile Mod-
elling as a modelling misconception can lead to a denial of the benefits that can
be accrued from Agile Modelling.

1. Models equal documentation.
Nothing could be further from the truth! A model is part of the documen-
tation, but it is by no means sufficient as documentation. That is, a (UML)
model, as good as it may be, cannot adequately represent all the information
needed to describe how the requirements (functional and nonfunctional),
behavioural and structural of a software system are to be implemented. For
example, Figure 3.1 illustrates part of a Rose model developed for a real-world
system built on one of the projects I have worked on. This Rose model has links
to word documents (such as Overview), screen designs (such as APS-Frame-
View), design notes (APS-MVC-Design), classes (APSFrameController, APS-
FrameModel, APSFrameView), Sequence diagrams (View SQM Questions)
as well as class diagrams, collaboration diagrams, Visio diagrams (in pseudo
UML as well as Screen layout designs indicating panels, layouts and compo-
nents), Activity diagrams, etc. Thus, the models are (an important) part of
the documentation of a system, but only a part.

2. Modelling implies a heavyweight software process.
Again this is not true. The fact that you are using some form of modelling to
describe your system does not mean that you must be using a formal software
development process. It may well be that placing the modelling task within

31

32 Agile Software Construction

Fig. 3.1 Part of a Rose Model.

the context of a development methodology may well help, but modelling does
not equate to a software process.

3. You must “freeze” the requirements.
The point here is that many people believe that you must be able to freeze
the requirements before you start to model. In theory this would be great.
If you had all the requirements presented to you before you start modelling,
then all the questions about what the system should do would be answered
at the start. It would also make deciding on what should be in the model
easier. However, that is theoretical, in reality requirements change (even in
the smallest projects). This can be for a variety of reasons. For example:
� Those who wrote the requirements missed out some details (that may only

come to light when the development is progressing);
� The users find their needs change during the lifetime of the project; or
� The project is a Greenfield software system in which the requirements are

difficult to ascertain upfront (or any combination of these).
Thus, although for contractual reasons you may need to formally freeze the
requirements, the reality is that these requirements will change. Thus, the
design and implementation of the system may need to be “agile” enough to
keep pace with these changes (either during development or in subsequent
iterations).

3 · Agile Modelling 33

+addAppointment(): Appointment
+deleteAppointment(): Appointment

Psion

-appointments

+add(in object: Object) : void
+remove() : Object

«datatype»
Appointment

Organizer Display

Fig. 3.2 Classes diagram produced in Visio.

4. Your design is carved in stone.
This is a leftover from the more traditional waterfall-based approaches to
software development. In an ideal world, you would like to remove as many
unknowns and variable elements from software development as possible.
Therefore, to have the design “fixed” and never changing would be great.
Again this does not work in reality. This is for a variety of reasons, including
changing requirements, but also the fact that designs are an abstraction of the
implementation. This means that as an implementation is progressing some
elements of the design may be found to be unimplementable, inefficient or fa-
tally flawed. Thus, during the implementation some changes may be required
to the design to ensure a working system, etc. In addition, there may be some
situations in which it is difficult to define more than a highly abstract model,
as not enough is known at that point about how the system should work. Thus,
the model will need refinement at a later date when some missing information
or understanding becomes available. I know some of you may be thinking that
you should not move on from the modelling phase until you have this infor-
mation, but in the real world there are times when you don’t have a choice.

5. You must use a CASE tool.
By this I mean that if you are going to do some modelling you must use some
form of Computer Aided Software Engineering tool such as TogetherSoft’s
Together Control Centre or Rational’s Rose. Of course, these tools may well
make things easier, but they are not mandatory. Indeed in the first edition of
Hunt (2003), I used the UML modelling features of the Microsoft tool Visio
to generate all the models presented. As a comparison, Figure 3.2 is a diagram
in Visio while Figure 3.3 is from Rose and Figure 3.4 from Together. As an
extreme, I once worked for a software company, writing Smalltalk software
for the financial industry, where they wanted me to use Paint to draw class di-
agrams. Note all of these (as well as hand-drawn diagrams) represent models.

6. All developers know how to model.
Generating appropriate, correct, well-formed, understandable models is
not trivial. It takes time to get familiar with whatever tools, notation and

Appointment

+ add(in object : Object) : void
+ remove() : Object

<<datatype>> Psion

- appointments

+ addAppointment() : Appointment
+ deleteAppointment() : Appointment Organizer

Display

Fig. 3.3 Class diagram produced in Rational Rose.

34 Agile Software Construction

Fig. 3.4 Class diagram produced in Together.

approaches are being used. Just as with programming itself, the more mod-
elling you do, the better you get. In addition, the more you study the models
generated by yourself or your colleagues, the more you will learn. Thus, just
taking a developer and asking him/her to start creating a sound robust model
of sufficient clarity and abstraction is generally a flawed approach.

7. You can think of everything from the start.
One problem with UML style models is that they are static – that is, you
cannot execute them. So, it is hard to determine whether they cover “enough”
or whether you have missed out some critical areas. Therefore, believing
that you can think of everything and cover all eventualities at the start of
modelling is wrong for all but the simplest systems.

8. Modelling is a waste of time.
I have both heard, and had to deal with, this myth. This myth represents the
extreme opposite of that promoted by the waterfall boys – that is, designing
models has no benefit, just get on with the coding – that’s what you are
delivering after all. You can of course see where these people are coming
from. The model is not what gets delivered to the user and is not what will
meet their eventual needs. However, let me ask you this “which would you
prefer to live in, a tower block in which the architect first draws up plans,
scale models and prototypes to confirm any outstanding issues or one where
the builders just got on and did it?” Personally I would be happier in the
one where some models were generated. And to some extent software is the
same. On a personal level, I have found that working on software that can
be placed within the framework of a model and in which the model provides
the starting point, the basic structure and the context is extremely useful and
I believe this helps to produce more robust systems. For example, on a recent
project, the products of four software developers were integrated for the first
time within an hour. I believe that this was achieved because we had generated
appropriate designs and that at the core of these designs were the models!

9. The world revolves around the data model.
That is, the data model describing, for example, the information in the
database, is the centre of the universe and the object-oriented model is based
on this. This is a view that is prevalent in organisations with a very strong
database culture or in those that have migrated from a more data-oriented
language. However, while there is certainly a mapping between the object
and relational worlds it is not the case that the data model dictates the object
model. The two maybe very closely aligned or they maybe quite distinct –
it depends on the application, etc. It is also important to remember that
the relational world of a database and the object world of, say, Java have

3 · Agile Modelling 35

very different requirements when it comes to performance, maintainability
and reusability and that these elements will impact on the design of their
models. It is also not true that either is less important than the other. Almost
every commercial system I had ever worked on had a database at its heart.
Therefore, the data model used with the database is very important. However,
the database was only one part of these systems and the other parts were
just as important. For example, a gearbox is very important within a car;
however, there are many other parts that go to make up the car and designing
a car solely around its gearbox would be a mistake!

So what about the issue being discussed in this chapter – modelling in a dy-
namic, iterative and incremental process? Well issues 3, 4, 7 and 9 are the most
important myths or misconceptions to refute. This is because these issues are in
general wrong and thus we need to adopt a different approach to modelling (an
agile approach).

3.3 Agile Modelling

So what is Agile Modelling? First, it is not a complete methodology in the sense
that you can do Agile Modelling and that is sufficient. Rather it is an approach to
the modelling aspects of a software development method. That is, it is an add-on
to an approach such as the Unified Process (or indeed XP). The Unified Process
is actually a framework. It has often been described as being heavyweight. This
is true if you adopt the whole of the Unified Process. However, that was never
the intention except for very large, very long-lived projects. Instead, you should
adopt the aspects of the Unified Process that meet your requirements and inte-
grate additional methods or techniques as appropriate. Figure 3.5 illustrates this
idea.

The use of Agile Modelling is just another technique that can be used to aug-
ment the Unified Process. Thus, adding agile modelling to the Unified Process
is completely in keeping with the original aims of the Unified Process. This is
illustrated in Figure 3.6.

Fig. 3.5 The Unified Process as a framework.

36 Agile Software Construction

Agile Modeling

Unified Process

Fig. 3.6 Augmenting the Unified Process with Agile Modelling.

Okay, so Agile Modelling is an approach to modelling and not a complete
methodology. So what is that approach? If it is possible to summarise the concept
of Agile Modelling into one sentence, then it is an approach that “aims to model
just enough and no more!” Allied to this is the aim to use the simplest, appropriate
tools for this modelling. Another way to put this is that the right tool should be
used for the job. We shall come back to this issue of tools again later.

So, Agile Modelling “aims to model just enough and no more” but what does
this mean? What is “just enough” and how do you know when you have done
just enough! We will try and clarify some of this below but at this point let us
remind ourselves of the criteria presented in Chapter 2 regarding Agile Models.
Agile models should:

� Provide positive value in that they should have some utility, i.e. someone
should need them.

� Fulfil their purpose (and no more) so if a model is to be used to clarify how
some classes fit together, then that is all that it should clarify.

� Be understandable (to their intended audience but not necessarily to every-
one).

� Are sufficiently accurate for their intended audience!
� Are sufficiently consistent as long as those using the models understand them.
� Are sufficiently detailed. For example, when explaining the structure of a

group of classes, the exact set of methods, variables and constructors may
not be relevant.

� Are as simple as possible.

We will look at each of these points in more detail below.

3.3.1 Agile Models Add Value

First, Agile Modelling assumes that modelling is a means to an end and not the
final goal in itself (remember one of the principles of the Agile movement is that
working software is the primary aim). Thus, you do not need to model every aspect
of a software system if some of those aspects are either obvious, straightforward or
may not be needed. Instead model what is actually required to understand what
the software should do, how it will fit together and how it will operate? To put
it another way, a model is an abstraction of the software to be produced, so by
its very nature it should not be as detailed as that software, nor should it be as

3 · Agile Modelling 37

complete (otherwise you are writing the software just in a different language –
which is generally a waste of time and effort).

3.3.2 Agile Models Fulfil Their Purpose

An associated idea is that you should model with a purpose – and not just model.
This aims to help you to determine what should be modelled and at what level.
For example, when creating a model you should ask yourself “why am I creating
the model – how will it be used.” If the answer is “I don’t know,” then you need to
either find out or nor create the model. If the answer is “to explain to John how
this part of the system is structured,” then you have both the purpose and the level
of detail.

3.3.3 Agile Models Are Understandable

An agile model should be understandable to its target audience. Thus, if a model
is intended only for use within the modelling group themselves, then a shared
awareness of basic ideas, concepts and components can be assumed and do not
need to be reiterated again and again. For example, in a recent project we had
numerous subsystems that employed the combination of a factory object and a
singleton instance. These subsystems did little housekeeping type jobs at various
points. The typical structure of these subsystems is presented in Figure 3.7.

Quiet quickly it became unnecessary to keep repeating this particular pattern of
a Factory class, interface and implementation. Instead we could talk about the <X-
Y-Z>SingletonFactory. If someone said this is using the RecoverySingletonFactory,
then immediately people know that there would be a RecoveryFactory, a Recovery
interface and a RecoveryImpl class. Thus, when these systems were referenced we
could just draw a square box and label it appropriately. For creating white board
based models this saved time and space. Of course to anyone new to the project
this would have meant nothing, but within the context it was being used, the term
and short hand was very meaningful.

3.3.4 Accuracy and Consistency

Another important aspect of Agile Modelling is that the models need to be only
sufficiently accurate and consistent. That is, you do not need to worry about
crossing every “t” and dotting every “i.” Allied to this idea is that the model (or
models) should be comprehensible to their intended audience (but by implication
not necessarily comprehensible to everyone or at least sufficient for everyone) and
sufficiently detailed for that audience. Finally, the models should be as simple as
possible without losing their message. That is, unnecessary details need not be
included.

For example, if I am using a street map to try to get from one location to
another and I find that the map and the real world differ slightly (because of
changes since the map was printed), I do not necessarily throw the map away. I

38 Agile Software Construction

Fig. 3.7 A common implementation pattern.

may instead annotate the map at that point. Or use the map to find another route.
Equally, my map probably does not show every house on my street, rather it gives
an impression of a number of houses. That is enough for me to know that this is
a built up area and that if I go to this street I will find houses on it. In many cases
that is sufficient for my needs.

However, such a map would probably not be sufficient, accurate enough nor
detailed enough for a utility company wishing to provide fibre optic cables to all
the houses in my street. They would need a different type of map. Indeed such a
map may well not only provide a great deal more detail of the actual houses and
street, it may also show details that in my case I do not wish to know (such as what
exactly is underneath the road outside my house).

3 · Agile Modelling 39

3.3.5 Agile Models Are Sufficiently Detailed

It can take a great deal of time to put every element of detail into a particular
diagram within a model. In many cases, the level of detail may go way beyond
what is actually useful for the reader of the model. Agile modellers attempt to
keep the level of detail presented (and therefore created) to the minimum actually
required. For example, in Figures 3.8 and 3.9 we have the same class diagram.

In Figure 3.8, we show a great deal more detail than in Figure 3.9. However,
which diagram do you think is better at showing the structure of the EventManager
framework? Personally, Figure 3.9 shows me all the details I need to know to get the
basics of the framework. And certainly early on in the design process, this may be as
much as anyone needs to know other than the methods and properties that define
the public interface of this framework. That is, the “contract interface” between
the EventManager and the rest of the application. At a later date, if we need to, we
can fill in the details of the classes (possibly by reverse engineering the code).

3.3.6 Agile Models Are as Simple as Possible

Agile modellers do not try to use every aspect of the notation available to them,
rather they try and use appropriate notations and only try and define a minimum

Fig. 3.8 Detailed UML class diagram.

40 Agile Software Construction

Fig. 3.9 UML class diagram with much of the detail hidden.

amount of detail within the model. In addition, if something does not impart
anything useful in terms of information, then it should not be included in the
model.

3.4 What Sort of Models?

Another key idea in Agile Modelling is that content is more important than pre-
sentation. For example, the hand-drawn diagram in Figure 3.10 may not be the
prettiest UML diagram you have ever seen, the lines are not straight, the classes
not complete, etc.; however, it is the message it conveys that is important. If
this diagram is sufficient and effective in conveying that message, then that is
enough!

One more point to note about Agile Modelling is that whatever a diagram or
diagrams best suit the information you need to present, discussion or understand-
ing should be done. This does not mean that you must produce many different
diagrams. Merely that if what you need to describe is best presented as a class
diagram, then use it. However, if it is better to use a Sequence diagram use that.
In addition, if something is proving difficult to understand or work through in
one type of diagram then move to another – it may be that this will help. Also
do not feel afraid of mixing diagrams, placing some data modelling on a class
diagram, which may well help describe your problem, etc. The key here is to use
whatever tools and techniques are available to you to win the modelling battle.
In general, it is likely that you will need to use multiple modelling techniques to
understand a problem. Personally, I rarely find that a class diagram is suitable in
isolation. In general, I will create a class diagram in parallel with at least one other
behaviour-describing diagram (be it a sequence diagram, collaboration diagram,
activity diagram or start chart or simple flow chart, etc.) and often more than one
additional diagram.

3 · Agile Modelling 41

Fig. 3.10 A hand-drawn UML diagram.

3.5 Tool Misconceptions

At this point, it is worthwhile considering some misconceptions and myths relating
to the use of tools, modelling and UML.

1. UML requires CASE tools.
This is certainly not true – I can draw a UML diagram freehand on paper, use
a simple drawing package such as Paint or indeed with a tool such as Together.
It may well be true that to strictly adhere to the UML notation it is easier to
use something that knows about UML (and Visio might be such a tool). It
may also be true that if you want to generate code from the UML diagrams,
using a CASE tool such as Rose or Together makes life easier. But it is not a
pre-requisite.

2. Modelling requires the use of CASE tools.
An extension of the last point is that if you are going to create models as
part of your design you need a CASE tool that can manage, manipulate, cross
reference, etc., your models. While these features may well be useful, they are
not necessary. I can (and indeed have) used simpler tools such as Visio to
perform all the modelling necessary for the design of a system. Obviously,
the larger the system and the larger the amount of modelling performed, the
better a CASE tool may be.

42 Agile Software Construction

3. Agile modellers don’t use CASE tools.
This is a common misconception by those starting with Agile Modelling.
This is partly due to the emphasis of Agile Modelling on using the simplest
appropriate tool and if that tool is a white board or a piece of paper, use it.
The key word here is appropriate. If I need to work something through with
one of my colleagues, we might well use a white board or a piece of paper
and not worry too much about the accuracy of the UML notation being used.
If however, I am trying to describe a complex structure that will need to be
referenced by a variety of developers, possibly in multiple locations, then a
CASE tool might well be the most appropriate.

4. UML is all you need!
Some take the view that UML is all you need in terms of notation – if you can’t
do it in UML (aka the design tool you are using), then it is either not relevant
to an object-oriented system or not important enough to document. This is
not true. There are many aspects of a software project that you may wish to
document, but do not fit within the remit of a UML diagram, for example,
GUI storyboarding, data modelling, etc.

5. The CASE tool is master.
This is more a perception than a misconception. It is a perception because
users often feel that they are battling with the CASE tool and that they have
to work in the way prescribed by the CASE tool. Certainly, I know that some
of the colleagues I have worked with over the years have an almost irrational
hatred against one well known CASE tool because of the way it forces them
to work. Some of this can be overcome with training and some by choosing
a suitable tool. The important thing is that the CASE tool should not be the
master but the servant. It should help you with your work and not hinder it.
Thus, finding an appropriate tool (or tools) is important. For example, in one
case Together proved to be particularly well suited to the organisations way
of working and to the developers experience and background.

3.6 Updating Agile Models

Finally, we come to the question of when you should update the models you have
created. The general gist of when this should be is “when it hurts not to,” that is
when you actually need to.

What does this mean? Take, for example, the case on a recent project I was
involved with. On that project, we created models of what we would implement,
these helped us to understand what was required and the structure that would
be used. However, for various memory and performance reasons, it was found
that the implementations had to change to try and reuse as many Java Swing
components as possible and to cache any data not actually being displayed. This
necessitated quite a few changes to the behavioural aspects of the system and some
changes to the structure of the system.

However, at that point we did not go back and rework the models as they had
served their purpose – they had helped us to understand the requirements and
how the system should be structured (in addition, they still gave a flavour of the

3 · Agile Modelling 43

system). If those models were never needed again, reworking them would have
been a waste.

Some 6 months later, this aspect of the system was to be updated. It was at
this point that a software engineer updated the models by reverse engineering the
classes. He also worked through the code to update the behavioural aspects of the
model. This had two effects: first, the models were updated in a timely fashion,
and second, the software engineer involved gained a detailed understanding of
this part of the system before he commenced further design.

In addition, some models may never be required again and can be thrown
away. For example, the hand-drawn models used to allow myself and a colleague
to understand how two areas of the system will interact do not necessarily need to
be saved for posterity. The existing models may be more than suffice. Therefore,
the hand-drawn model (created to help our understanding) can be thrown away.
This means that it does not need to be maintained, fully documented, recorded,
reviewed, etc. This can be taken further for more formal models, created using
tools such as Rose. However, I tend towards caution and tend to feel that if the
model was established enough to have been created in a CASE tool, then it should
at least be stored in a version control tool (such as CVS or SCCS) so that it can be
retrieved if necessary at a later date (otherwise the effort used to create the model
may be lost altogether!).

3.7 Summary

In this chapter, you have seen that the act of modelling does not require expensive,
complex modelling tools, but rather that modelling may involve anything from a
scrape of paper up to and including powerful tools such as Rational Rose, Together
Control Centre or a UML tool embedded in Eclipse. It depends on the motivation
behind the model and the purpose to which the model will be applied.

You have also seen that Agile Modelling is truly a set of guidelines or principles
that try to help the model to remain responsive to change and thus agile. As such
Agile Modelling is clearly more art than science and inevitably you will get better
at it the longer your try to be an agile modeller.

What you may have noticed with Agile Modelling is that we have not dis-
cussed the Agile modelling lifecycle or the steps you must go through or indeed
the milestones that must be achieved. This is because Agile Modelling (as was
previously stated) is not a stand along design process, rather it is more of an ap-
proach to modelling that can be applied to other methodologies (as an example see
Chapter 7).

In the next chapter, we will consider steps you can take to help you become an
agile modeller.

4
How to Become an Agile Modeller

4.1 Introduction

This chapter seeks to consider how you can make yourself an Agile Modeller or how
a team of designers can promote Agile Modelling. We will do this by expanding
upon the Agile Modelling practises discussed back in Chapters 2 and 3. We will
then consider in more detail the supplementary Agile Modelling practises which,
while not a necessary part of Agile Modelling, are useful in helping you achieve an
Agile Modelling approach. We will follow this by discussing how you can maximise
the modelling process (and by doing so become more responsive and adaptive
and hence more agile). We will conclude by discussing how an Agile Modelling
session might be run.

4.2 Agile Modelling Practices

The Agile Modelling approach defines a set of practises that help to make successful
Agile Modellers. These practises are grouped into four categories of core practises
and three supplementary categories. The idea is that in order to consider what you
are doing to be “Agile Modelling,” you must have adopted all of the core practises,
where as the supplementary practises are optional.

4.2.1 The Core Practices

The core categories are:

1. Iterative and incremental practises
� Apply the right artefact(s). That is, use the right type of diagrams for what

you want to express (which also implies familiarity with your modelling
technique).

� Create several models in parallel. No single diagram type can capture all
aspects of a system (or part of a system), so use different diagrams.

� Iterate to another artefact. Keep moving between diagrams, particularly if
you get stuck with some concept or problem. The shift may help to clarify
the issue.

45

46 Agile Software Construction

� Model in small increments. You should only attempt to model enough for
what you need now and leave the rest until later.

2. Effective teamwork practises
� Model with others. Do not sit all alone modelling away without any interac-

tion, rather model in pairs; model in teams; bring in other people to help
understand the problem. The resulting models are likely to be better.

� Active stakeholder participation. Get users and other project stakeholders
involved. This promotes rapid feedback as well as help to bring others on
board.

� Collective ownership of the model. Try to avoid people taking personal own-
ership of parts of the system model. This should ensure that no one ever
says something like “Your model is wrong,” as it is everyone’s model. This
should help to encourage a culture within which a problem in the model
should be fixed and that this fix should involve those with the appropriate
knowledge (including users).

� Display models publicly. This ensures that people get familiar with the models
and that the information within the models is shared. In some cases, a
“Modelling Wall” may be set up for this specific purpose.

3. Practises promoting simplicity
� Create simple content. You should aim at making your models no more

complex than they need to be. Do not add complexity just for the sake of it.
� Depict models simply. You should use only what you need in the notation

you are using. You should also lay out your models so that they are easy to
comprehend.

� Use the simplest tools. Don’t try to use a modelling tool such as Rational
Rose when a whiteboard, note pad, etc. will do.

4. Validation oriented practises
� Consider testability. That is, you should take into account how the system you

are designing will be tested during the modelling phase (and not just during
coding). Part of the agile mentality is to test often and test thoroughly. Thus,
your designs should support this idea.

� Prove it with code. At the end of the day, a model is an abstraction of what
some software will do. It therefore needs to be proven in code. Within an
agile approach, on iteration may be quite short and the modelling step and
the implementation step close together. Thus, the model can be proved (or
otherwise) by coding it up.

4.2.2 The Supplementary Practices

The three additional supplementary categories of practises are productivity, doc-
umentation and motivation.

1. Productivity
� Apply modelling standards. That is, a common set of modelling conventions

should be agreed upon and adopted by all modellers. This is the modelling

4 · How to Become an Agile Modeller 47

equivalent of having coding standards and adhering to them. It just makes
life easier for all concerned. But note that this does not just mean “adopt
UML,” that is like saying “by adopting Java you have sorted out your coding
standards.” These standards should indicate the good and bad features of the
notation and how they should be used. Of course, the standard should not
obstruct the overall aim of being agile. Remember that understandability is
more important that mindlessly following standards.

� Apply patterns gently. Design patterns are an extremely useful tool in de-
signing the modern complex software system (see later in this chapter for
more details on design patterns). However, applying a design pattern can
(initially at least) result in more complex software than required. Thus,
Agile Modellers do not try and jump in at the deep end and design in
complex patterns. Indeed, as design patterns are effectively abstract design
elements that must be instantiated in the current context, there is usually
more than one way of “implementing” the pattern within the emerging
design. As one of the goals of Agile Modelling is to keep things simple, ease
into the design pattern by modelling as simple a version of the design pat-
tern as is required to just provide what is needed. This initial model can be
added to at a later date if required.

� Reuse existing resources. This is the Agile Modelling equivalent of “don’t
reinvent the wheel”. An Agile Modeller will try to reuse whatever is available
that does the job. Remember in many cases, designs are more reusable than
code.

2. Documentation
� Discard temporary models. In many cases, when a model is created, it is

only useful for a short period of time. This may be because the model is a
work in progress prototype, or because it is only intended to clarify some
concept among a group of designers, or a set of potential alternatives for
an architecture, etc. If a model has fulfilled its purpose (remember Agile
Models should fulfil a purpose), then the model is no longer useful and
may be thrown away. If it is thrown away, then it does not have to be
maintained, does not clutter up the model library and will not need further
documentation provided for it.

� Formalize contract models. Contract models are those models that describe
the interface between your project and any external resources. Examples of
external resources might be an external database, a DTD defining XML files
sent between your project and other systems, an external API (application
programming interface), etc. These interfaces are fixed constraints on what
you can do at these points and need to be formally defined and maintained.
However, you should aim at minimising the number of these in order to
travel light and keep things simple.

� Update only when it hurts. When should you update a model? This issue has
already been discussed in the previous chapter. It is sufficient to state here
that if a model is never used again, then there is no benefit in maintaining it;
thus, the ideal time to update a model is just before you will use it, because
this is the point at which it would hurt to have an out-of-date model. The

48 Agile Software Construction

implication of this is that model maintenance is done on a Just In Time
(JIT) basis, meaning that many models may never be updated or may be
revised years after they went out of date. This minimises the effort needed
to maintain potentially obsolete models.

3. Motivation
This deals with the basic question “when should you model”. Agile Modelling
puts forward two motivations for carrying out any modelling; these are model
to communicate and model to understand.
� Model to understand. This is the commonest role of modelling, that is, mod-

elling to understand the domain within which your system must be imple-
mented and modelling to understand how the system must be structured
to meet its requirements.

� Model to communicate. The second reason to model is to communicate your
ideas with one or more people. For example, creating a model to discuss
how two subsystems will interact or how a particular instance of a generic
concept must be crafted.

4.2.3 Interactions Between Practices

Although Agile Modelling defines a set of practises that will promote its main
aims, it is not necessarily very clear how they relate. (Figure 4.1) shows at the
category level, how the four core categories support each other.

This diagram shows that “simplicity” makes testing easier and helps drive small
increments. The application of the “simplicity” principle may also result in an
increment that re-factors the design to improve simplicity. In turn, each increment
should be validated and this validation (or at least the results of the validation)
may influence the next (or later) iterations. “Teamwork” also has a bearing on
iterations as it allows multiple stakeholders to be involved in each increment.
In turn, smaller increments give more opportunity for those stakeholders to be
involved. “Simplicity” also helps as it lowers the barriers to entry into the modelling
world for various stakeholders.

Validation

Iterative &
Incremental

Teamwork

Simplicity

validate each
increment makes testing easier

lowers barriers
to participationopens up opportunities

for other team members to
get involved

drives increments tobe small
(may promote a refactoring increment to improve simplicity)

supports

results may influence
next increment

Fig. 4.1 Interactions between practises.

4 · How to Become an Agile Modeller 49

4.3 Adopt the Core Agile Modelling Practices

Having outlined the four core practise categories above, how do you go about
achieving them or at least promoting them. In this section, we will consider this
question.

4.3.1 Iterative and Incremental Modelling

First, let us consider how you can promote incremental change. That is, model in
small increments (where small is relative to the size of the system). These small
increments should then be validated (for example by implementing them) before
moving onto the next piece of modelling work.

Incremental modelling promotes rapid feedback in the form of peer review
comment, proof by implementation or from discussion groups. Part of this em-
phasis on small increments and rapid feedback is that if you find you need to
throw away the modelling you have just done (perhaps because it has been shown
to be un-implementable), then you are not throwing away a great deal.

This means that you are always modelling relevant and pertinent aspects of the
system (i.e., they are about to be implemented) and are not modelling potential
features that may never be implemented. It also means that any corrections to the
model identified during implementation can be feed directly back to the model
if appropriate.

Taking the concepts of modelling with a purpose and incremental modelling,
we can now draw a flow diagram illustrating the overall Agile Modelling process.
This is presented in Figure 4.2.

Figure 4.2 illustrates the basic Agile Modelling process. First, identify the issue
(or features) to be analysed. This may involve client discussions, group analysis

Start

Discuss / Research
an Issue

Need to model
to Understand?

Select
appropriate tool

Reverse Engineer
Source Code

Model

Write Source
Code

Generate
Source Code

Fig. 4.2 Agile Modelling flow diagram.

50 Agile Software Construction

or some form of research. Once this is done, the first thing you need to ask is “do
I need to carry out any modelling to understand this in more detail?” If not then
you can immediately start to write the code. For example, if what you are doing is
writing a single class that loads images from a file and writes images back to files
then you probably don’t need to model it.

4.3.2 Working as a Team

This is easy to say but harder to achieve, because many developers tend to uncon-
sciously take ownership of “their” part of the system. This means that one may
try to blame, for a problem(s), other people’s parts of the system and may only
consider how they can improve or revise their own parts. They may also resist
change to their “baby”.

Agile Modelling promotes the concept that it is the team that takes ownership
(and thus responsibility) for the whole system. This helps to avoid a culture of
blame and also promotes humility – it is rare for one single person to know all
aspects of a system and the environment that it is developed within!

There are a number of steps that can be taken to promote effective teamwork
within Agile Modelling, these include:

1. Modelling with others
2. Active stakeholder participation
3. Collective ownership
4. Public model display

We shall consider each of them below.

1. Modelling with others
One big problem with modelling is that it is an abstraction of what you
are going to be implementing. Thus, at some level, some details are left out
(otherwise you are not modelling but developing the code). Because of this,
it is very hard to verify a model by inspecting it – it doesn’t have all the
details. Thus, you can’t run a model and say “oh no! I have missed out this
issue, feature, function, etc.”). By modelling in pairs or in teams, there is far
less chance of these features being overlooked. In addition, as the modelling
process progresses, more than one person will be considering how the model
fits with other areas of the model, how it will operate, what problems may
occur, etc. Certainly, we have found that modelling sessions involving two or
more people have produced very effective models. This does not mean that
the whole modelling process needs to be done in teams. Our experience has
been that a suitable room with whiteboards, etc., is ideal for the modelling
session, and then one or more people are tasked with formalising what has
been discussed. This more formal model (if required) can then be reviewed
at a later stage, entered into an appropriate tool, etc., as required.
An obvious problem for organisations adopting an Agile Modelling approach
(which is shared with Extreme Programming) is that, organisations that
traditionally had a divide and conquer approach to design may perceive that

4 · How to Become an Agile Modeller 51

they are “wasting effort” by using more than one person on a design task. Our
experience is that this is not justified as the resulting models tend to require less
revisions and are more robust than those produced by individuals in isolation.

2. Active stakeholder participation
What does this mean – essentially that all those who are involved in the
project, or have an influence on the project, should buy into the project. This
may seem obvious, but it includes stakeholders such as senior management,
end users, system owners, development and production support teams, etc.
For example (and particularly if this is the first Agile Modelling effort being
undertaken within the organisation), senior management must publicly and
privately support what is being done, how it is being done, etc. End users (or
system owners) must be prepared to and able to share their knowledge with
the team as and when required. For example, having an end user who knows
what is required available all the time is essential. This does not necessarily
mean that they are physically available within the office (although this is a
very good option) but that you can contact them (possibly by email or phone)
at any time to confirm requirements, check out workflows, validate your as-
sumptions, etc.. Certainly, I have brought them into modelling sessions before
now to help work through what options should be available and how various
workflows will actually operate. Other less obvious stakeholders include
representatives of systems that you might integrate with (be they legacy or
otherwise). I have been involved in projects where the biggest problem during
design was not communication with the end users but with other developers
in other groups due to the pressures and timetables they were under.

3. Collective ownership
This comes back to the idea that no one person owns any part of the evolving
model. There should be no one who thinks, “Your model is wrong” because
all models are everyone’s. Thus, if a model is wrong, then everyone has the
responsibility to fix it. Although in theory, anyone can fix the model, in
practise, for larger projects, there needs to be some control over this. One
way of handling this is a list of models that need to be revised. These can
then be reviewed by a team, and revisions and alterations introduced.

4. Display models publicly
That is, let everyone see the models. This can be done on a “modelling
wall” where all models are displayed. Although for large projects, this may
not be possible and thus making all models available for scrutiny within a
central resource or having regular “model fests” where models are put up and
described using a projector can be done. Why do this? There are a number
of reasons; first, everyone gets to see the models as they are evolving and take
on board what is being done. They can learn from each other (that’s a nice
way of doing this) as well as consider how what they are doing fits in. Indeed,
this can help to overcome issues related to integration between features at a
later date. Second, it also helps to breakdown the cultural barriers associated
with showing colleagues your work. If everyone does it from the most senior
designer downwards, it becomes natural. Another benefit is that if anyone
looks at the public models, then they can see how things progress (which
may be important in convincing senior management that Agile Modelling is
actually producing something).

52 Agile Software Construction

4.3.3 Promoting Simplicity

Agile Modelling (along with other agile approaches) promotes simplicity in what
you are doing. That is, you should try to adopt the simplest model that does what
is required and no more (or less). The simpler a model is, the easier it is for others
to understand it and to potentially find problems within it.

There are in effect two aspects to simplicity, the first relates to the way in which
you model and the second to the content of your models. We shall consider both
below.

Way in which You Model

Avoid making your modelling diagrams more complex than they need to be. For ex-
ample, Figures 4.3 and 4.4 show the same class structures. However, in Figure 4.3,
a lot more detail has been added. Does this actually add to the comprehension of
the diagram or just make it larger. The version in Figure 4.4 has reduced the infor-
mation presented partly by limiting the UML notation used on the associations

Fig. 4.3 A detailed class diagram.

4 · How to Become an Agile Modeller 53

Fig. 4.4 A simpler class diagram.

between the classes. It has also hidden some of the class details shown in Figure
4.3. Depending on the purpose of the model, this may well make things easier to
understand and simpler to comprehend.

Keep your modelling diagrams as clear and simple as possible. Even if you attempt
to keep your diagrams clear of clutter, there are still lots of ways in which you
can make it easier for the reader of the diagram. For example, you can explain
about crossing lines, curved lines, diagonal lines, mixing top down layouts with
horizontal or diagonal layouts (for inheritance etc.). Attention to apparently such
minute will help to make your diagrams simpler for the reader.

Use the simplest modelling device available. This goes back to the points made
in the last chapter about not necessarily needing a CASE tool. Rather, you should
use the tool most appropriate to the situation. If I want to create a one off model to
explain to my colleagues how the LockManager works, then drawing it on a large
whiteboard in the meeting area might well be the best thing to do. Similarly, if I
am creating a model that is expected to be refered by a lot of people on a regular
basis, then creating it within a CASE tool might also be appropriate. Thus don’t
use a CASE tool where a whiteboard (or back of envelope) will do or vice versa.

For example, if you need to carry out some modelling to help in understanding
your task (or how it integrates with other elements of the system, etc.), then
you need to select the most appropriate modelling tool and do some modelling.
Notice that this is a two-way process. I might start off by modelling on a paper or a

54 Agile Software Construction

whiteboard. I might use this as a medium for discussion and peer review. Once I am
happy with the model (and decide that the model is worthy of preservation – see
later), I can select a different modelling tool (such as a CASE tool) to represent the
final version of the model. Once I have completed my modelling task, I can write
the code for the model. This might be done completely by hand or may involve
some automated code generation. For example, one of the very nice features of
TogetherSofts’ Together system is that it generates classes as you create the models.
Thus, when you have to “implement” the model, the basic structure is already
there. Once this is completed, you can reverse engineer the final result back into
your modelling system (this happens automatically in Together) so that the model
remains up-to-date. Various plugins for Eclipse give you the same functionality.

Travel light – create just enough models and documentation to get by. Another
issue is how much modelling and associated documentation are required. This
is of course a “how long is a piece of string” question. However, from personal
experience, I have found that in many cases, detailed models that I have lovingly
created have never been referenced or had to undergo major revisions long before
they were actually used again. What does this tell me? First, it is hard to predict
what will be actually needed in the future and second, don’t try to create models
just for the sake of it. Rather, create models where and when they are needed. If
the model you create is on a whiteboard and it is wiped off after it has been used,
then that’s fine; if you create a model in a CASE tool because it will be referenced
by many others, then that is why you took the effort to use a CASE tool. There will
of course be many situations which lie between these two extremes, but in these
cases, use the “update only when it hurts” principle so that if you have created a
model and it isn’t being used you do not revise it (at least not until you need to).
The same is true for the documentation you are likely to create to go along with
your models (see Agile documentation later in this chapter).

Content of Your Models

Avoid over-architecting your system to support potential future requirements. One
of the key principles of the agile movement is to only do what is required now in
order to “get the system out” and not to try to engineer features which may or may
not be needed in the future. While this may seem an obvious statement and akin
to telling your grandmother to suck eggs, it can be a hard one to resist. In many
organisations that have adopted an object-oriented approach, the first thing to be
done is to create the architecture within which the rest of the system will be created.
But what does this mean? What is the rest of the system? Is it the current iteration or
is it the full system that might be built within the next 2 years over many iterations.
The temptation (certainly among software engineers who want to do the right
thing) may be to design an architecture that will provide plugins for all possible
future features; however, this may take a very long time and may result in features
being engineered, which are never actually used. For the agile movement, the focus
is on what is to be delivered now and thus the architecture should focus on that.
But even here, things can be difficult, for example, a common object-oriented
approach is to program to an interface. Thus, different implementations can then
be provided for these interfaces. But what if there is only one implementation at

4 · How to Become an Agile Modeller 55

Fig. 4.5 A complex class hierarchy.

the moment – then why have an interface. With tools such as Eclipse, it is a simple
task to re-factor the design at a later stage to use an interface instead of the class.

Avoid developing a complex infrastructure early on. This point is related to the
above point. That is, don’t try to over-engineer your solution early on for what you
think will be required later – it will almost certainly have to change anyway. For
example, creating a set of interfaces and a hierarchy of abstract classes that provide
more and more functionality for a single concrete class may prove beneficial in
the future or may not, but it is probably not required at the present time. As an
example, consider the class hierarchy presented in Figure 4.5. In this figure, there is
one single concrete class but there are two abstract classes and eight interfaces. This
may result in a very flexible architecture for the future, but for a single concrete
class, this seems excessive!

Assume simplicity. Assume that the simplest model is the best solution. This
of course has to be taken within the context of the caveat that, what is referred
to here is the “simplest model that does the job” is the best solution. An Agile
Modeller should always strive to produce the simplest model that provides the
required features, functionality, performance, etc.

4.3.4 Validating the Models

You should try to validate your models as thoroughly as you would your code
unit or system test your application. In many ways, this is the Agile Modelling
equivalent of the emphasis Extreme Programming places on Unit Testing. That
is, you should make sure your model is correct and implementable. But how can
you do this? Agile Modelling through its practises suggests that models can be
validated:

1. Within the team. If more than one person examines a model and works through
a model, then there is a greater chance that any flaws on the model will be
uncovered. Use of the “modelling wall” may be an extreme version of this, but
certainly opens up models to a great deal of scrutiny.

2. With the target audience. Although end users and those with the knowledge of
the systems requirements may not be UML modellers, they can still have the

56 Agile Software Construction

behaviour of any created model explained to them and walkthroughs of how
the models would operate can certainly be carried out (personally, I am not a
believer in presenting a user with a load of used case models or indeed a set of
sequence diagrams and lettering them get on with it). If done with care, this
can help in identifying potential future problem areas at a very early stage.

3. Implement the model – The ultimate test. As was said earlier, a model is an
abstraction of the code that will be written. Therefore, to really test, the design
code can be written to move the design from abstraction to the concrete
implementation. This does not necessarily mean that you should implement
the whole model to prove that the model works, rather I take it to mean that
prototype code can be used to prove contentious parts of a model or areas of
risk within the model. For example, to clarify if an assumption about a legacy
interface, a Java feature or an operating system function is correct. It also
means that within an iterative approach, such as that described in Chapter 2,
you may be able to model a bit and then implement that modelling before
moving to the next feature, and modelling that and implementing it. Thus,
if the model for a particular feature is shown to be unimplementable (or to
have less major flaws), then they can be resolved then and there and not some
months later during some distinct implementation phase.

4. Design for testability. A final practise that should be adopted relating to valida-
tion is to consider testability when you design. That is, you should make sure
that your design can be easily tested once implemented. This may seem obvi-
ous to you, but when I first encountered this concept, it almost stopped me in
my tracks for its simplicity, benefit, utility and how obvious it was. However, I
had not seen any writings about this before and realised that I had been failing
to take testability into account at design time. That is not to say that the code
was not tested, but this was not an issue considered during design. However,
by considering how the code produced from the modelling phase could be
tested, you can make it much easier for the person who codes the model to test
it and thus make it easier to identify potential problems. Since encountering
this concept, it is one of the things that I have most heartily adopted!

4.4 Consider the Supplementary Practices

Earlier, we discussed some of the supplementary practises that can be used when
modelling in an agile manner. These practises are not essential but may make life
easier for the Agile Modeller. As was discussed, these can be grouped into three
categories.

4.4.1 Improving Productivity

The main aim here is to help you attain your goal quickly and efficiently. Using
the approach “apply modelling standards consistently,” in which you do not
overuse the particular modelling notation being applied, and within which you
reuse proven designs where and when appropriate helps productivity. This last
point may seem contradictory to the earlier point about not using complex

4 · How to Become an Agile Modeller 57

patterns too early. However, there is an important point here, we did not say don’t
use design patterns, but we did say “complex” design patterns. Design patterns
can still be one of the most effective ways to reapply design knowledge between
one situation and another.

4.4.2 Design Patterns

Historically, design patterns have their basis in the work of an architect who
designed a language for encoding knowledge of the design and construction of
buildings (Alexander et al., 1977; Alexander, 1979). The knowledge is described
in terms of patterns that capture both a recurring architectural arrangement and
a rule for how and when to apply this knowledge. That is, they incorporate knowl-
edge about the design as well as the basic design relations.

This work was picked up by a number of researchers working within the object-
oriented field. This then led to the exploration of how software frameworks can
be documented using (software) design patterns (see for example Johnson (1992)
and Birrer and Eggenschmiler (1993)). In particular, Johnson’s paper describes
the form that these design patterns take and the problems encountered in applying
them. Since 1995 and since the publication of the “Patterns” book by Gamma et
al. (1995), interest in patterns has mushroomed. Patterns are now seen as a way
of capturing expert and design knowledge associated with system architecture to
support design as well as software reuse. In addition, as interest in patterns has
grown their use, representational expressiveness has grown.

Motivation Behind Patterns

There are a number of motivations behind design patterns. These include:

1. Designing reusable software is difficult. Finding appropriate objects and abstrac-
tions is not trivial. Having identified such objects, building flexible, modular,
reliable code for general reuse is not easy, particularly when dealing with more
than one class. In general, such reusable “frameworks” emerge over time rather
than being designed from scratch.

2. Software components support the reuse of code but not the reuse of knowl-
edge.

3. Frameworks support the reuse of design and code but not the knowledge of
how to use that framework. That is, design trade-offs and expert knowledge
are lost.

4. Experienced programmers do not start from first principles every time; thus,
successful reusable conceptual designs must exist.

5. Communication of such “architectural” knowledge can be difficult as it is in
the designers head and is poorly expressed as a program instance.

6. A particular program instance fails to convey constraints, trade-offs and other
non-functional forces applied to the “architecture.”

7. Since frameworks are reusable designs, not just code, they are more ab-
stract than most software, which makes documenting them more difficult.

58 Agile Software Construction

Documentation for a framework has three purposes, and patterns can help to
fulfil each of them. Documentation must provide:
� the purpose of the framework,
� how to use the framework,
� the detailed design of the framework.

8. The problem with cookbooks is that they describe a single way in which
the framework will be used. A good framework will be used in ways that
its designers never conceived. Thus, a cookbook is insufficient on its own to
describe every use of the framework. Of course, a developer’s first use of a
framework usually fits the stereotypes in the cookbook. However, once they go
beyond the examples in the cookbook, they need to understand the details of
the framework. However, cookbooks tend not to describe the framework itself.
However, in order to understand a framework, you need to have knowledge
of both its design and its use.

9. In order to achieve high-level reuse (i.e., above the level of reusing the class
set), it is necessary to design with reuse in mind. This requires knowledge of
the reusable components available.

The design patterns movement wished to address some (or all) of the above in
order to facilitate successful architectural reuse. The intention was thus to address
many of the problems which reduce the reusability of software components and
frameworks.

Strengths and Limitations of Design Patterns

Design patterns have a number of strengths including:

� Providing a common vocabulary.
� Explicitly capturing expert knowledge and trade-offs.
� Helping to improve developer communication.
� Promoting the ease of maintenance.
� Providing a structure for change.

However, they have certain limitations. These include:

� Not leading to direct code reuse.
� Being deceptively simple.
� Easy to get pattern overload (i.e., finding the right pattern).
� They are validated by experience rather than testing.
� No methodological support.

In general, patterns provide opportunities for describing both the design and the
use of the framework as well as including examples, all within a coherent whole. In
some ways, patterns act like a hyper-graph with links between parts of patterns. To
illustrate the ideas behind frameworks and patterns, the next section will present
the framework HotDraw and a tutorial HotDraw pattern example explaining how
to construct a simple drawing tool.

4 · How to Become an Agile Modeller 59

However, there are potentially many design patterns available to a designer.
A number of these patterns may superficially appear to suite their requirements,
even if the design patterns are available online (via some hyper text style browser;
Budinsky et al., 1996), it is necessary for the designer to search through them
manually, attempting to identify the design which best matches their requirements.

In addition, once they have found the design that they feel best matches their
needs, they must then consider how to apply it to their application. This is because
a design pattern describes a solution to a particular design problem. This solution
may include multiple trade-offs which are contradictory and which the designer
must choose between, although some aspects of the system structure can be varied
independently (although some attempts have been made to automate this process
for example, Budinsky et al. (1996)).

When to Use Patterns

Patterns can be useful in situations where solutions to problems recur but in
slightly different ways. Thus, the solution needs to be instantiated as appropriate
for different problems. The solutions should not be so simple that a simple linear
series of instructions will suffice. In such situations, patterns are overkill. They
are particularly relevant when several steps are involved in the pattern that may
not be required for all problems. Finally, patterns are really intended for solutions
where the developer is more interested in the existence of the solution rather than
how it was derived (as patterns still leave out too much detail).

When Not to Use Design Patterns

Avoid applying complex patterns too soon. Much has been written about design
patterns within the developer communities over the last few years and I have been
one of those writing. I have certainly found that patterns have been a very useful
way of designing software and providing a common language for communication
within design teams. So why should you be wary of using complex patterns too
soon. This is for a number of reasons, for example complex patterns are likely
to make your design “more complex.” This will make it harder for designers
to understand the model, particularly for those who are unfamiliar either with
patterns or with the pattern in hand. In addition, a design pattern is effectively
a chunk of reusable meta-design which must be applied within the context of
your evolving design. The way in which you apply this pattern may change as
your understanding of the domain, application or system develops. In general,
patterns become more useful as a design matures or as the complexity of the
system is gradually built up. Thus, try to engineer into complex design patterns
as and when needed rather than from day one.

4.4.3 Controlling Documentation

Documentation can be the mire which slows down any Agile Modelling project.
Why? Because potentially you may feel that you need to provide additional de-
sign notes for each and every diagram you create within your model. Creating,

60 Agile Software Construction

Fig. 4.6 Part of a Rose model with integrated word documents.

maintaining and updating this additional documentation is a significant invest-
ment and one which can eat into your time. For example, Fig. 4.6 illustrates part
of a Rose model developed for a real-world system built by Experis Ltd. This Rose
model has links to word documents (such as Overview), screen designs (such
as APS-Frame-View), design notes (APS-MVC-Design), classes (APSFrameCon-
troller, APSFrameModel, APSFrameView), Sequence diagrams (View SQM Ques-
tions) as well as class diagrams, collaboration diagrams, Visio diagrams (in pseudo
UML as well as Screen layout designs indicating panels, layouts and components),
Activity diagrams, etc. Thus, the documentation and additional elements are (a
significant) part of the design of the system.

In fact, things are worse than implied in this diagram as some of the word
documents include screen dumps of the Rose tool illustrating the structure of the
classes and interfaces being discussed.

Maintaining these design aspects involves a significant amount of work, and
may actually accrue you little or no benefit. How then to control this volcano of
potential documentation. First, you should apply the “update only when it hurts”
principle. If you need to use a document and it is out of date, then that is the
time to update it (another way to look at it is that you update documentation in
a Just-In-Time fashion). This may seem lazy but it works very well. For example,
the person who needs this documentation is the one who notices that it is out
of date. In updating it, they gain a great deal of insight into how that area of the

4 · How to Become an Agile Modeller 61

system works. Once they have updated the documentation, they often understand
it far better than if they had just read it.

But how do you stop this plethora of documentation being created in the first
place. Two Agile Modelling principles are particularly relevant here; first, if part
of your system interfaces with anything external, then this interface needs to be
documented. Second, you should apply the same logic to the documentation as
you apply to the models. That is, keep only models that have a reason to be kept and
discard temporary models that are not needed. The same goes for documentation.
If I am writing something down to explain some details to “Bob,” then I should
not necessarily make that part of the permanent fabric of the model. However,
if I am documenting some core aspect of the system that will be accessed by
numerous other areas of the system, then there may well be a need for longer-
term documentation.

4.4.4 Motivations for Modelling

Finally, in this section, it is worth considering why you model at all? This may seem
obvious, but I have seen situations where the motivation for modelling seemed to
be to create beautiful coloured diagrams to hang on a wall and be admired. This
may seem harsh, but in at least one case, once the modelling phase was completed
the models seemed to be ignored. Worse during implementation the next phase of
the system was being designed. The designers were using the models they had so
carefully crafted a year before as the basis of the new system, but the programmers
had ignored the models and were doing their own thing. There were numerous
reasons for this situation and most had little to do with the models created, but at
least some were down to the modellers creating very large, very detailed models
that the developers found incomprehensible. The modellers had lost sight of one
of the fundamental goals of modelling “To Communicate”. For them, the end
result was the model in all its glory. They probably considered that their primary
aim was “To Understand” the application domain (which was within the credit
assessment domain). And thus, they focussed on understanding the minute of
their application and its domain. They failed to consider communication of their
ideas to the developers. The simple act of keeping in mind that a model should
communicate to others how a software system should operate can be a very useful
frame of reference that can result in far more useful models being created.

4.5 Maximise Your Modelling Potential

4.5.1 Know Your Tools

As a software engineer you have available to you at any one time an array of tools
to help do your job. Depending on your role or the activity you are engaged in, one
or more of these tools may be appropriate for the task at hand. Knowing which
tools are appropriate and when is an important factor (and this may not just be
your choice) in your agility and the speed within which you can develop your

62 Agile Software Construction

models. One company I worked for over 10 years ago suggested that I use Paint
as my core-modelling tool for creating OMT style diagrams. At that time, I was
horrified but could not make them see why this was a problem (partly as they were
only just starting to embrace object-oriented techniques and were not clear what
this really meant). However, it goes further than that; it means actually knowing
how to use your tools properly. Within computing, we are all subject to the “throw
away the manual and try it out” syndrome. However, with today’s sophisticated
CASE tools, you really do need to know how to use the tools properly in order to
get the most out of them.

4.5.2 Refactoring

One of the key concepts behind Agile Modelling is that you design for today
and if you find tomorrow that a new feature requires you to modify your design
you do so. These modifications are generally known as model refactoring when
applied to your existing model. However, this is where CASE tools can be extremely
useful, as many of these tools will make the task of refactoring significantly easier.
For example, in tools such as Together and Eclipse, if you wish to move a Java
package from one place to another, renaming all classes so that they are now in
the new packages and modifying all references to those classes (in Java files and
non-Java files), then this can be done with a simple drag and drop. Similarly, if
you find that it would now be advantageous to have a Java interface based on an
existing class and to reference this interface instead of the original class, and then
this can be done from a menu option! This greatly reduces the laborious tasks
traditionally associated with refactoring. This means that refactoring becomes less
of an onerous task and thus one that is far easier to embrace. Thus, when doing
design work, modellers are far more willing to think, “I can come back here and
refactor this if I need to.”

4.5.3 Test-First Design

Test-first design means that if you can design the test then you can design the
model. If you can’t design the tests then you shouldn’t design the model. The
implication is that if you don’t know how the model would be tested (when
coded), then you don’t know enough about it to design it. There is an awful lot of
truth in that statement as knowing how the model will be tested implies that you
understand not only how it should operate, but also how it should not operate.
Thus, you should design the test first then design the artefact to be tested.

4.5.4 Model in Increments

Incremental modelling is akin to incremental software development, in that it
gives you a chance to create a piece of the model and then to test it, possibly
by review, presentation or implementation, before doing some more modelling.
This helps to identify problems within models early on. This is in contrast to more
traditional approaches to design, in which the design phase is done up from one

4 · How to Become an Agile Modeller 63

big step with the resulting design (and model) being implemented at a later date.
Even some more incremental approaches still tend to advocate a large amount of
up-front design, with the coding phase being the incremental aspect.

4.5.5 Think Small

Within the Agile Modelling movement, there is an emphasis on keeping things
small, thus you should aim to keep your teams small as they require less manage-
ment, less reporting and have better communications. You should aim to keep
your models small, as they are easier to create, maintain and understand. Doc-
umentation should be kept to a minimum and should provide what is needed –
just! In addition, you should keep your modelling sessions short so that they can
be focussed and the results fed back quickly to the rest of the group.

In practise, this is fine and dandy for small projects but may not be so practical
for larger projects. For example, it may not be possible to keep the overall team
small because the project is a large one! But the points relate to having focussed
modelling sessions and modelling diagrams that focus on various aspects of the
system when they are needed can still be applied.

4.5.6 Agile Models Are Good Enough

An important point to focus on is that Agile Models are good enough for their
purpose rather than being all encompassing or strictly accurate given the notation
used. For example, if a hand drawn UML diagram varies from the strict letter of
the UML law, then as long as those reading it still understand what is being said,
what does it matter. In addition, if I create a diagram that does not include every
aspect of the system but conveys to you what was required, then that is okay. It is
important not to get bogged down in the detail (after all the model is not the end
product, the software is that!) unless that detail is significant!

4.6 Agile Modelling Sessions

One of the key things proposed above is the use of modelling sessions during which
those involved work on part of the system being modelled. This concept (rather
than modelling in isolation) is not new but to model in an agile manner means that
these sessions have a particular flavour to them. First off the modelling sessions
need a reason. They exist to serve a purpose (and not as entities on their own
right). Thus, it should never be the case that a modelling session is scheduled and
at some later date the content of that session will be decided. Rather, in situations
where a need arises then a modelling session should be scheduled. Remember,
we are trying to “travel light” and thus do only what we need to do in order to
achieve the final goal (working software). Thus, for every modelling session, there
is a reason for its existence and a goal to be achieved.

Another feature of Agile Modelling sessions is that the right people are involved
and only the right people. Thus, if a department thinks they should be involved

64 Agile Software Construction

in a modelling session and wants to send someone along, then they should be
allowed to attend if they add value to the meeting. That is, an attendee at the
meeting should have a reason for being there that promotes the overall goals (or
to put it another way does it help the end user to have that person attend). It helps
the overall goal of delivering the working software if the attendee can contribute
information or knowledge to the session, it does not necessarily help the end goal
if the attendee is there because a department does not want to feel left out!

So who are the right people to have at the modelling session and how many
people should there be? First, the number of people attending should be kept to
a minimum. Partly this is because of the increased complexity of communication
as the number of people grows and partly this is because once the team gets
too big then design by committee may ensue. Second, as a rough guide there
should be at least one (and preferably two) experienced (agile) modeller(s), less-
experienced modellers, appropriate project stakeholders as required (for example,
database experts, operating system experts, end users, application requirements
experts, etc.). These project stakeholders are not expected to actually perform the
modelling but may be necessary for the modellers to achieve their goals. That is,
they will provide information, clarify requirements and confirm assumptions as
and when required. Obviously, in the real world having these people in hand may
not be possible, but being able to contact them during the meeting for example, by
video phone, email or telephone can be nearly as good. Larger meetings may also
benefit a facilitator or meeting coordinator who chairs and controls the session
ensuring that it stays focussed, decisions are made and actions are identified. It
may also be necessary to have a “scribe” available to take down notes or minute
what has been done.

Another key issue is how long the meetings are. The general philosophy is that
they should be as short as possible, but as long as required to get the job done. My
own personal experience is that they should never be more than a few hours long,
even when the work will clearly take several days. Instead, the sessions should be
broken up into half day or less sessions over several days as the breaks between
sessions help promote rapid feedback with other members of the project and
alleviate modelling session fatigue. Of course, modelling sessions do not need to
last for hours and can be as short as 10 minutes or half an hour depending on the
subject matter and the context. The key is that they should have a limited duration
and a focus on a single topic.

The nature of the modelling sessions will also change over time. Early in the
project’s life cycle, the modelling sessions will tend naturally towards the “bigger
picture” as the project team attempts to understand the domain and the appli-
cation, the architecture to be adopted, what is in and out of scope etc. These
modelling sessions tend to be of the longer variety and may spread over several
days (although as suggested above, they should actually be comprised of several
shorter sessions). As the project develops, the modelling sessions will start to focus
on lower level details and are likely to be shorter and probably involve less people.
These modelling sessions are likely to focus on one feature to be implemented,
or part of a use case, etc. They may still last for several hours, or may just involve
a couple of modellers for tens of minutes. These last very short sessions, tend to

4 · How to Become an Agile Modeller 65

be focussed at a very detailed level and may be very iterative (that is, model a bit,
implement a bit and model again).

Finally, all modelling sessions should terminate once you have achieved your
goal!

4.7 Agile Models

One thing that needs to be made clear and has been hinted at before is that Agile
Modelling does not focus on a single type of model. That is, when you are involved
in an Agile Modelling session, you should not be doing class diagram modelling
(to the exception of any other type of diagram or analysis). If you are doing this
type of modelling, then you are not being agile; agile does not just mean being
able to respond to changing requirements, but also to a philosophy or approach
to modelling. Here it refers to the ability to move freely from one representational
form to another as required by the evolving design and analysis.

To illustrate this, consider the modelling meeting room I recently set up. This
room had three large fixed whiteboards on three of the walls, a digital projector and
a movable freestanding whiteboard. In the centre of the room was a round table.
This format allowed people to jump up and draw free hand on the whiteboards as
and when required. Typically, each board might have a different view of the evolv-
ing model. One might represent a set of classes (in psudeo UML class diagram
notation), another might provide a sequence style diagram and the third a descrip-
tion of the underlying database structures. The fourth might have a hand drawn
representation of what the users screen might look like. Modellers would move
between the different diagrams as and when required in a high iterative manner.
This is actually natural for object-oriented designs (although sadly, it is not how
modelling is done). This is because each type of diagram gives you a different per-
spective onto the evolving model but is not the whole thing. Merely focussing on a
single type of model is a bit like trying to perceive a 3D world by only considering
it from a 2D perspective. You would see only slices through that world and would
fail to appreciate the overall picture. As an example, consider a person from a 2D
world trying to understand the structure of a 3D orange. Rather than seeing a three
dimensional orange sphere, they would see (from the side) a horizontal orange
slice and would conclude that an orange was probably a long rectangular object.

Good modelling is therefore likely to cross boundaries involving, for example,
the creation of class diagrams to understand the structure, sequence diagrams to
consider system behaviour, and data models to consider the implications on a
database, etc.

4.8 Agile Documentation

An important focus of the whole agile community is that the end goal of devel-
opment is the working software and not the artefacts created along the way.
Documentation is just one such artefact and is thus also not the end goal.

66 Agile Software Construction

Therefore, to travel along the agile road, care must be taken with documentation.
One of the key steps that has traditionally generated a lot of documentation is the
design phase. Therefore, Agile Modelling needs to consider how documentation
production can be made agile.

As with models, documentation should have been sufficient and should do
what it needs to do but no more. It should have a target audience and thus be
sufficient for that audience and should have a purpose.

Once again, we come to the question, what does this mean? What documen-
tation should be created?

There are several issues here. First, the type of documentation required during
development is often different from that which is required during an ongoing
maintenance. Second, being agile means only producing the documentation you
require now, and not trying to second guess what will be needed in the future.
Third, what we mean by documentation and what form it takes changes as the
project lifecycle changes. Initially, documentation may refer to requirements rep-
resented on cards or in user documents, later a large part of the design documen-
tation will comprise models and various diagrams, later still comments in code
(such as Javadoc) are part of the documentation of the system, and finally, various
maintenance oriented documents may be created. Each has a target audience and
a type of information that will be different. Finally, an important practical point
is that few skilled technical authors are the modellers or developers who write the
code.

Thus, the emphasis to be placed on producing documentation will change
during the lifetime of the project. The production of very large detailed documents
early on in the design phase may not actually help the production of the software.
How many detailed design documents have been carefully written and then placed
on the shelf hardly ever to be refered again?

This does not mean that Agile Modelling does not involve documentation and
it is important to avoid the model’s self-documenting attitude that can surface.
Being agile certainly does not mean that! Rather, it means that you only create
just enough documentation to get by and no more (but equally no less). How do
you do this? As with models, you should produce documentation when you need
it or when it hurts not having it and in an appropriate format for the audience.
In addition, you should not be afraid to throw documentation away again. Not
all documentation has to be written in a word processor, a set of hand written
notes may well do just fine. Equally, an architectural design document intended
to explain to everyone on the project the core framework may well need to be
written in a more formal manner and held centrally within a version control
system. It depends on the nature of the documentation, the intended audience
and the duration of the utility of the documentation.

The content of the documentation should aim to provide just enough data and
no more, i.e., it should be sufficient, just, it should have a purpose, it should have
an audience for whom the document is meaningful (and thus to whom the level of
detail is appropriate) and it should be sufficiently accurate. For example, I recently
wrote a short document explaining a set of Java property files for an application we
had developed. These property files had not been explicitly documented before as
the source code’s Javadoc essentially did that already for the developers. However,

4 · How to Become an Agile Modeller 67

the application was now being handed over to a maintenance team who were
not Java developers but would need to be able to configure various aspects of the
application. Thus, concepts such as Java property files were meaningless to them,
but a set of text files, with key value pairs were meaningful. In addition, the
properties were described in terms of user functions rather than in terms of
the Java classes they configured. The documentation was thus written just in
time (on demand) and was focussed at the target audience. Until this time, the
documentation had not been needed and would have had to have been revised
several times as the property files had grown.

The documentation should also hold data when appropriate and refer it else-
where when appropriate. This last point aims to apply to documentation, the
same concept as is applied to the software – only hold data once, then it only
needs to be updated once. Earlier, I had mentioned some design documentation
that held screen dumps of Rose models. In this case, every time the Rose model
was updated, the associated documentation needed to be updated even if the text
was still valid!

Finally, don’t document information when you expect the information to
change (unless documentation is necessary to help make the change).

4.9 Summary

This chapter has taken you through some of the practises that help achieve an Agile
Modelling approach. Some of the practises and principles may have sounded a bit
like “home spun wisdom” but they do work. They may also not sound particularly
special to Agile Modelling and many are not and could be usefully applied to many
non-agile projects. The point is that by adopting all the practises, it helps you to
become more agile and this should help you to be able to respond to the ever-
changing demands on the typical software project, as well as to focus on the actual
end goal, the production of working systems for end users. Later in this book, we
will come back and review some of the practicalities of applying an agile approach
in the real world on small and large projects and the experiences that have been
gained. But for the moment stick with the concepts and get ready for Extreme
Programming!

5
Extreme Programming (XP)

5.1 Introduction

In the last couple of chapters, we have looked at Agile Modelling, which applies
agile philosophies to the modelling activities that take place within software de-
velopment projects. In this chapter and the next, we will start to look at how these
philosophies have also been applied to the act of programming. In our case, we
will look at Extreme Programming (more commonly known as XP). XP is part
of the agile movement that focuses on the writing of the software that will imple-
ment the required system. This may involve writing Java code, Smalltalk, C++,
C#, database tables, XML files, etc.

XP has been widely misunderstood and is often associated with hacking, a lack
of planning, avoiding the creation of documentation and of programmers wildly
attacking code while working in pairs. One ex-colleague joined a company a few
years ago that claimed to have adopted XP. One of their “rules” associated with
XP was that the developers were not allowed to write any comments in their code
(they used Java so they had rules that Javadoc was illegal). Their claim was that
code was “self documenting” and, anyway with XP, you did not need any form of
documentation.

All of these myths are wrong; XP does not say that you do not need documen-
tation, or that you can hack or that there is no planning involved. Hopefully, as
you will see from this chapter, XP places a great deal of emphasis on planning, and
on the production of software that is as simple as is achievable, but that still gets
the job done. This simplicity should help other developers understand the code;
however, understanding the code often relies on good commenting, clarity of the
actual implementation and consistency. It is not a hacker’s paradise. Indeed, many
of the practises that we will discuss later, greatly restrict (or indeed abolish) the
ability to hack.

However, XP is very lightweight in terms of being a process (as was discussed
earlier in Chapter 2). Thus, it is easy to take what you think you need from XP and
create something which is neither XP nor particularly agile. Returning to the ex-
colleague above, he recounted stories where the code within the system contained
complex methods, with no comments and few if any tests. As the developers
who had created the original system had all left, there was no shared knowledge
available. This meant that when the system required changes, the dense code

69

70 Agile Software Construction

resulted in a lack of understanding on the part of new developers. This was partly
due to the apparently complex design (it may have been simple but lacked enough
guidance to elucidate its secrets), could not easily be retested after refactoring
(which was most definitely required), was difficult to integrate back into the rest
of the code and failed to follow current best practise Java coding standards. All of
which breaks the guidance given relating to XP, and means that the company was
not following XP and the project could not be said to be agile.

In the rest of this chapter, we will look at the values that underlie XP, the 12
core practises of XP and how they inter-relate and support each other. We will
also consider the concept of a user story as used by XP as this is a core artefact
often referred to within the 12 XP practises. In the next chapter, we will consider
how XP can be implemented on a software project.

5.2 Core XP Values

The seminal book on XP by Kent Back is Extreme Programming Explained: Embrace
Change, Published by Addison-Wesley (Beck, 1999). In this book, Kent outlines
how XP came about and his motivations behind a great deal of what is in XP.
Core to this are the four values that underlie the whole of XP. These values are
presented as:

1. Communication
2. Simplicity
3. Feedback
4. Coverage

We shall examine each of these values below.

5.2.1 Communication

Communication within a software team – the very idea! Whilst this value is to
many so obvious as to not require any explanation at all, it is not necessarily
adopted within a software project. As two quite typical examples of what can
happen on software projects, consider the following two (true) stories.

Some years ago (in 1995) I was asked to provide some Smalltalk and object oriented training
to a small software company providing resource management software to the British Ministry
of Defence (MoD). This project had 4 or 5 developers working on it, all in the same room.
They had already started implementing their solution when they decided it would be useful
to have some training on this new fangled object orientation stuff and on their preferred
implementation language: Smalltalk. As such, during the training and mentoring sessions I
tried to use examples from their own work to make things more relevant. One of the things
that this did do was to help highlight the lack of communication that was going on in the
team. On one occasion, I discovered that two people sitting opposite each other (but with their
monitors facing away from each other) were essentially implementing the same core utility

5 · Extreme Programming 71

oriented functionality in parallel class hierarchies. They appeared to be blissfully unaware
of the duplication they were currently involved in!

More recently, a company specialising in Java based web applications for academia here
in the UK, wanted some guidance on applying some of the newer features in the Java 2
Enterprise Edition using JBOSS. However, their biggest problem seemed to be that their
core development team were in a large room, with all the desks facing the walls around the
perimeter and in which no-one ever spoke to anyone else and everyone jealously guarded
their own parts of the system or the applications that they had developed. Their motto seemed
to be “knowledge is power” and never talk to your co-workers, they will only steal what you
know. Although some knew this was a problem, those who had been there the longest and
were the most senior were the ones who were most wedded to the current ways of working.

Why do these situations occur? There are of course lots of reasons, but com-
munication seems to be a very hard thing for computer scientists to get right.
This may be due to the sort of people who are attracted to computing and soft-
ware development in particular. It may be due to the practises often encouraged
(and in some cases enforced) during their University education. For example, few
projects undertaken in a University Computer Science degree actively encourage
group working or communication of any sort. Indeed, many require the student
to confirm that the project is all their own work and that they did not collaborate
with anyone else!

Whatever the reason for poor communications, many problems or defects
within software systems can be traced back to poor communications during the
development of the system. This may be poor communication between program-
mers, between end users and the development team, between developers and
manager, etc. For example, back in the late 1980s, I was involved in a project
to create design analysis software for a large motor manufacturer. We had been
working closely with two engineers to understand the processes that needed to be
automated. Things seemed to be going well and we had a growing understanding
of what the system needed to do. One day a third engineer was invited to join us
(I don’t remember now why but it turned out to be one of the most important
things that happened). During the meeting, we were discussing the workflow of
the proposed software system. Suddenly, the third engineer said “that’s not how
it is done!”. Knowingly we said, “yes it is, this is exactly the same as if you were
doing things manually.” At which point, the third engineer turned to the other
two and asked what was going on. At that point, the bombshell was dropped.
One of them said, “We know, but we were keeping things simple for them, so that
they wouldn’t get confused!” In this case, the engineers had knowingly withheld
information from us that would later have proved to have been potentially fatal
to the project. Communication is everything!

5.2.2 Simplicity

A rule I have adopted and forced those working with me to adopt for many years
now is to keep things simple. If a simple solution is adopted, then it is easier for
all to understand. I have had to argue this case many times. I remember trying

72 Agile Software Construction

to convince a very talented and skilled developer that using a set of binary flags
within an int to hold information about the state of the system was not a good idea.
I proposed the use of a set of Boolean instance variables to do the same thing –
each with a meaningful name. However, he was convinced that using a single int
with each bit representing part of the system state was far more efficient, it used
less memory and could be implemented using bit wise operations resulting in
faster processing. The problem was that the other developers on the project were
from data processing backgrounds and were not comfortable with bits and bit-
wise operations. For them, this was definitely not the simplest design! Note that
the application spent the majority of its time waiting for the results of database
searches and in terms of performance this was the greatest bottleneck.

The simplicity value underlying XP says that you should aim for the simplest
solution that does the job (echoes of Agile Modelling here). Why is this, the theory
(and general experience is) that the simpler the implementation, the easier it is
to implement, test, understand, maintain, etc. Thus, the easier it is to find and
correct bugs in the software. This does not mean that the solution is necessarily
simple or trivial; rather that it is the simplest solution to the problem in hand. In
the above example, both solutions would work, but the use of boolean instance
variables was a better fit with the simplicity criteria. That is, it is sufficient for its
task, but no more or less.

Achieving simplicity is not easy. The simplest code may actually be harder to
write in the first place. It is also hard to ignore tomorrow and not to engineer in
features that would be great if you need this function in a future iteration. There are
also other “pressures” that may limit the simplicity of the solution; these include
the desire to produce some fun code or to “impress other programmers” with
your skill. The problem is that the feature you thought would be implemented
tomorrow, may never be implemented, or the day after tomorrow, it becomes
something very different altogether!

As Kent Beck says in Beck (1999):

XP is making a bet. It is betting that it is better to do a simple thing today and pay a little
more tomorrow to change it if it needs it, than to do a more complicated thing today
that may never be used anyway.

5.2.3 Feedback

It is good to get feedback. Projects should get feedback early, and often, from the
customer, from the team, from real end users, from other project stakeholders,
etc. It helps to identify problems early on, deal with unknowns and clarify issues.
That is, it generally helps avoid nasty shocks later on.

Feedback can be at many different levels, for example, by running unit tests
every time any new code is integrated into the system, any problem introduced by
the new code can be identified immediately. At another level, giving frequent small
releases to friendly end users, containing just enough new functionality to make
it worth their while, means that they can provide feedback quickly and frequently
about the evolving system (rather than waiting for a big bang delivery and then
saying – that’s not what I wanted!).

5 · Extreme Programming 73

5.2.4 Courage

You will need courage to adopt XP. Why? Because you need courage to refactor
code (that is change existing code so that it is better than it was before but such
that it does not provide any new functionality), you need courage to throw away
code, you need courage to code for now and leave tomorrow to tomorrow and
you need courage to move management to adopt XP’s way of working.

5.3 User Stories

User stories are developed any time by customers, but particularly during the
planning game – a process which occurs at the start of an XP project. A user story
is a description in the customers’ own words, describing what the system needs
to do. Conceptually, they are written by the customers, although in practise a
developer may write down what a customer tells them. Each user story is captured
separately; Beck (1999) recommends the use of index cards as they are relatively
small, easy to move around, order and shuffle and cheap to throw away if required.

Each user story has a name, a short paragraph describing the purpose of the
story, an estimate of how long it will take to implement (which may be “we don’t
know”), and a relative importance (such as “must have,” “should have” and “nice
to have”).

In general terms, a user story describes something that the system must do in
a way that is meaningful to the project stakeholders (and is thus not written in
“techie talk”). It is not generally that detailed (index cards limit the amount of
space available) and can be treated as a placeholder for more detailed requirements
that will be obtained at a later date.

Note that it is customers, however, who can validate (and reject) stories and
not developers.

A question which frequently arises is how does user stories relate to RUP’s use
cases or to Features in Feature Driven Development (FDD). For the moment, we
will evade this question slightly and merely say that they are all trying to achieve
the same goal, that is, to identify what the system must do in order that these
“what the system must do” descriptions can be used to drive the development
process.

5.4 The Twelve XP Practises

Given the four values presented above, twelve practises have been developed that
try to translate these into a way of working that achieves the aims of XP. If you
like, they are the twelve “best practises” that will allow you to fully adopt Extreme
Programming on a development project.

Looking at these best practises, you may wonder at their apparent simplicity,
but you should note a number of factors about them:

1. There is actually little new here – the practises are in general, well tried.
2. Where one practise is weak, another compensates – thus they work as a whole.

74 Agile Software Construction

3. One of the important ideas behind the agile movement is to be lightweight.
4. XP is not a complete methodology (but we will come back to this point later).

As mentioned above, there are twelve core practises which effectively define XP. If
you have not adopted all twelve, then you are not truly doing XP (although you
may be very near to XP within some agile continuum).

The 12 practises are:

1. The planning game. This focuses on planning the next release.
2. Small releases. A software system is developed iteratively with small releases

adding system features and allowing rapid feedback.
3. Simple design. Keep things as simple as possible but not simpler.
4. Testing. Unit tests and acceptance tests must be continually developed and

the code must pass unit tests for development to continue.
5. Refactoring. This involves improving the system (e.g., to aid simplicity) with-

out changing the functionality.
6. Pair programming. All code is developed by developers working in pairs (at

a single machine).
7. Collective ownership. Everyone owns all the code so anyone has the right to

change any of the code at any time in order to improve it.
8. Continuous integration. New code is integrated and the system rebuilt every

time a task is completed (which may be many times a day).
9. On-site customer. Have a real customer as part of the team, so that they are

always available to answer questions.
10. Coding standards. Have them and use them.
11. 40-hour week. Work no more than 40 hours a week so that the developers are

always fresh and ready for the challenges facing them.
12. System metaphor. Use the system metaphor to guide the whole development.

It is a metaphor for how the system operates (it is similar to the architecture
of the system but typically simpler).

We will come back to the practicalities of the practises in the next chapter; for the
moment, we will explore each practise in more detail.

5.4.1 The Planning Game

5.4.1.1 What’s in a Name

First let us deal with the name of this practise “The Planning Game”. I have found
that the very name of this practise causes problems (at least here in the UK). The
questions I have encountered range from “what’s a game got to do with serious
software development?” to “why make us play a game, we want to plan the project?”
The idea of this practise is far more serious than the name obviously implies. If you
have a problem with calling this practise the planning game then call it something
like the “Project Planning Workshop.” For me, this name is a far more accurate
description of what it does. However, XP has framed this practise in terms of a

5 · Extreme Programming 75

game to help elucidate what should happen when planning an XP project; we will
therefore stick with the term “Project Planning Game” in this book.

Planning an XP Project

XP projects involve a great deal of planning. This may have come as a shock to some
as they may have thought of XP as legalised hacking and thus considered planning
to have no part in XP. But planning is core to XP, although it is a very different
form of planning than that which might be found within a more traditional single
delivery style of project.

Many times, in a more traditional development project, a large amount of time
is spent crafting an elegant, complex and detailed plan using some tool such as
Microsoft Project. The end result is printed proudly by the project manager on
the largest printer available. They may even hang it on a wall for all to see. What
happens next obviously varies, but here is a scenario that is actually an amalgam
of various projects I have been in some way associated with in the past.

1. Developers begin to examine the plan and start making comments about how
anyone could expect them to produce component X is 3 days, or question
where the database migration task is.

2. As development progresses, developers tell their project leaders of their
progress and estimated completion times, projects leaders tell their man-
ager. At each stage, people unconsciously (or otherwise) err on the side of
optimism in their estimates. Resulting in a better-estimated position than is
the actuality.

3. The manager may or may not enter into the plan, the current state of the
project, as he sees it.

4. At some point, some critical milestone is missed, at this point, the plan is
re-assessed and it is realised that the plan and reality are out of alignment.
The manager then tries to find a way of squaring the circle of the project. At
this point, they may start forcing people to work excessive overtime or may
negotiate a later delivery or modify the list of features to be implemented. All
of which usually involve extensive discussions with the client.

5. The resulting plan may lead the whole project back to step 1 again and a new
cycle of catastrophe planning.

In XP, project planning is a more incremental and inclusive process. It is incre-
mental in that an overall plan of the project is created to determine (roughly)
when each release will occur and what will be in that release (at the level of overall
functionality). Then at the start of each iteration, what will be in that iteration
or release are determined in detail and an implementation plan for that release
is created at that point. As each iteration is relatively short, the act of planning
happens very near to the point at which the work is done. There is therefore little
chance for the plan and reality to become out of sync. It also means that if one
iteration does go awry, then the reasons for this can be examined at the start of
the next iteration and action taken to avoid this problem in the future.

76 Agile Software Construction

The idea behind the planning game is that XP projects need to be planned
just as much as any other software development project, but they need to be
planned in an agile manner. Thus, they should be allowed to respond to changes
in requirements, etc. Therefore, on an XP project, you initially start off by making
a rough plan quickly. This plan is then gradually refined, as more information
becomes available and as required features change, etc.

Agile Influences on Planning an XP Project

You are working on an XP project, so naturally you want to plan in an agile
manner. That is, you wish to apply agile principles to planning your work. But
what does this mean? There are a number of implications for how you will carry
out any planning for an agile project that come from trying to be agile. These are:

� Plan for now
� Responsibility
� Dependencies
� Simplicity

We will briefly describe each of these below:

Plan for now. This is akin to only implementing what you need for today and
leaving the rest for tomorrow. Thus, you should only do the planning that you
need for the next release/next iteration in detail and no more. You can still do
long-term planning, but not in such great detail. For example, you might decide
(roughly) what will be in future releases, at the level of user stories but expect
to come back and look at the detail of a particular release when that release is
due. Part of this comes from the realisation that at the start of that release, when
you consider the user stories to be implemented, you may find that a different
set are required due to user feedback, or changing requirements, etc.

Responsibility. The typical project is planned top down. That is, the top-level
management try and plan the project (hopefully with input from the actual de-
velopers). The end result is a plan for which the developers feel no responsibility
and towards which they feel no trust. Agile planning involves the developers the
whole way. They should feel that the plan is as much theirs as it is the managers.
Thus, for example, the person expected to implement a particular feature is the
one who must estimate it. Also, remember that in XP, an iteration should be
very short and have a duration of weeks rather than months.

Dependencies. When planning an XP project, you should ignore the dependencies
between parts. That is, you should not worry about whether task x is required
before task y. Instead, you should focus on the highest business priorities first
and allow other issues to come out in the wash.

Simplicity (in planning). You should keep in mind the type of planning that is being
done at that point in time in order to keep things as simple as possible (but not
too simple). For example, if you are planning to help determine the priorities
and ordering of user stories, then much less detail is required. However, if you
are planning the implementation of a set of tasks for a particular iteration, then
far greater detail is required.

5 · Extreme Programming 77

The Planning Game in Detail

The planning game relies on user (customer) stories to drive the iterations of
the project. These user stories are used to determine which features will go into
which iterations. From this, appropriate releases can be identified. Note that not
all iterations may result in a release being produced; as it is only worth handing
a release over to the users once there is something new and worthwhile for them
to look at. It is qute possible that a single iteration will not result in any obvious
new functionality to the end user and thus there may not be any benefit obtained
by creating a release.

Although the primary output of the Business Game is the plan, it:

� allows customers to make business decisions,
� allows developers to make technical decisions.

And to combine the results into the iteration oriented plan.
Within this framework the customer determines:

� Scope – what is in and out of the system.
� Priority – what is more important, less important, must haves and nice to

haves, etc.
� Composition of releases – what will be in each release.
� Release dates

In turn, the development team decides

� Estimates of how long various features will take.
� Consequences of for example, using a particular technology, for example,

Linux versus Microsoft Windows XP, Java versus C#, J2EE (Java 2 Enterprise
Edition) versus .Net.

� Team and Project Organisation (e.g. the organisation of the tasks)
� Risks associated with different features (e.g. will MySQL provide the required

level of performance or should an Oracle database be used).
� Detailed scheduling – which features are to be done when and in what order.

This involves balancing the technical risks (which will benefit from being
addressed early on) with the business priorities that may be more important
to the end user.

So how does the game proceed? We will only present a brief outline of the planning
game here as we will return to it in more detail in the next chapter. Essentially, the
planning game is comprised of two players (the Business and the Development).
The business is made up of all those who can make a decision about what the
system should do. The development is made up of all those who will be involved
in implementing the system.

The game has three phases through which play proceeds. These phases are the
exploration phase, the commitment phase and the steering phase. Although we
will describe each phase sequentially, play does not necessarily flow sequentially
from one phase to another, nor from one move to another within each phase.

78 Agile Software Construction

Rather the whole process is cyclical, and play moves between steps as and when
required. The steps performed during each phase are:

Elaboration phase
This phases help to identify what the system needs to do. It is compressed of the
following steps:

Write a story – the business writes a user story describing some behaviour required
of the system.

Estimate a story – development estimates how long the story will take to implement.
If they cannot estimate the story or the story seems too big then they can ask
for clarification or break the story up into smaller chunks.

Break a story up – the business must break a story down into small chunks if
required.

Commitment Phase
This phase allows business to determine the scope of the release and when that
release will occur (based on information provided by development and business).
The steps within the commitment phase are:

Sort by value – business must sort the stories (written on index cards) into three
plies (1) must have, (2) should have and (3) nice to have. This is effectively
applying a relative priority to each story.

Sort by risk – Development now sorts the stories into three further piles (1) stories
that can be estimated precisely, (2) stories that can be estimated roughly and
(3) stories that can’t be estimated.

Set velocity – development indicates how quickly they will be able to achieve the
estimates (which have been made in an idealised type of time).

Choose scope – Business selects which user stories will be in the next release.

Steering Phase
The purpose of the steering phase is to allow the plan to be updated as things
change over time. This phase is a little different from the last two in that the last
two are likely to have happened at the same time. This phase happens later on
within an iteration or between iterations as required. The players return to the
game to consider what has been happening during the lifetime of the project (or
at least the lifetime of the current iteration, etc.). The steps in the steering phase
are:

Iteration – from each iteration the business picks the stories that will form that
iteration.

Recovery – if it is realised that not all the stories can be implemented for a particular
iteration, then Development must ask Business to help determine which stories
should remain in the iteration and which might be moved to later iterations.

New Story – if Business realises that an important story has been omitted, then it
can introduce that story to Development. This story can be estimated and the
iteration re-planned. This will probably mean that one or more existing stories
will be removed from the current iteration, etc.

5 · Extreme Programming 79

Re-estimate – if it is clear that the current plan was over or under optimistic, then
Development can re-estimate the remaining user stories and adjust the project
velocity and consider the resulting implications.

By following through the planning game, a set of requirements for each iteration
can be produced. Depending on the stage of the project, the current iteration
may be planned in detail, with a future iteration only penned out in terms of
anticipated user stories. This is okay as at the start of each iteration, the planning
game will occur again. In fact, there are actually two types of planning games, they
are:

1. The initial planning game
2. The release/iteration planning game.

The only real difference between the two versions of the planning game is in the
level of detail. The initial planning game paints with a broad brush and plans the
general set of iterations and roughly plans out the user stories for each iteration. It
is only really interesting in ballpark estimates, etc. The release or iteration planning
game, plans out in more detail a single iteration and explores the high level user
stories by breaking them down into lower level stories.

5.4.2 Small Releases

The system being developed should be released often to the end users so that
they can provide frequent and rapid feedback to the development team. Thus,
the smallest possible releases that can add business value should be identified
and scheduled. That is, as soon as a set of tasks can add value to the customer,
it should be released to that customer. This not only allows customers frequent
opportunities for providing feedback (such as that’s not what we meant, or actually
that’s difficult to use), but also makes short-term planning easier. That is, each
instance of the planning game needs to consider only the next few weeks and thus
the level of unknowns and the amount that the team can have diverged from the
plan is limited.

5.4.3 Simple Design

So here’s a shock for some – XP does do design! However, it is design with a
particular emphasis – the code that is produced. In pure XP, this design process
also happens just as the code is to be implemented. XP itself does not mandate how
the code is designed, it could be done merely by the pair programmers discussing
how they would approach the coding, it could be done in an Agile Modelling
manner, it could be done using flow charts, etc. This is beyond the scope of XP.

However, XP does present the following as being features of a simple (and thus
from XP’s point of view) effective design. A simple design is one that:

� Passes all the tests available for it.
� Has no duplicated logic.

80 Agile Software Construction

� Ensures that any assumptions, or intentions, made by the developers are
explicit to anyone reading the code (for example by using Javadoc or other
comments in the code).

� Has the fewest possible classes and methods.

XP claims that by ensuring that your design has the following characteristics, you
will produce the simplest possible design.

Note that as with Agile Modelling “the simplest design” does not necessarily
mean that it is a particularly simple, small or trivial design. The key is that it is
the simplest design that allows you to fulfil its purpose and no more (or less).

5.4.4 Testing

In XP, testing is all pervasive. Test are produced before any code is written, ac-
ceptance tests are generated as soon as requirements (in the form of user stories)
are written, unit tests are produced before the code is implemented, all code must
pass all tests from development to progress, etc.

This may seem a little extreme (but hey it is Extreme Programming we are
talking about). But the idea is that no code should exist without an associated test.
Indeed things are taken further with “Test first Coding” the XP equivalent of “Test
First Design” described in Agile Modelling. That is, you should be able to write
(and indeed should actually write) the tests for a module before you implement
that module. The argument is that if you can’t write the tests for the module, then
you don’t know enough about the module to implement it yet.

The arguments for test first coding are persuasive. I was once asked to provide
training for a project that used several “Industrial Year Trainees”. These were
undergraduate students, who had taken a year out from their degrees to work in the
industry (sometimes as a compulsory part of their course). Some of these students
were asked to implement a large number of commands that would be used with
an implementation of the command pattern. This pattern is used to represent a
request to perform some operation on an object without hard coding that request.
Instead, a command object is instantiated and configured to indicate the operation
to perform and any parameters to pass. This also allows the command objects to
be manipulated, stored, queued, sequenced and in some cases undone. The use of
patterns was alien to the industrial year students, as was the application and as were
client server systems (and the command pattern was being used between a client
and the server). The end result was that the students implemented the commands
and treated the ability to compile the code as sufficient testing to release the code
to the central repository. As might be predicted, this caused chaos and resulted in
a great many commands never working, and having to be re-written from scratch.
If the students had been forced to write the tests first, then either they would have
learned enough to understand what they needed to do, or the problems they were
encountering might have been highlighted earlier. Pair programming might also
have alleviated this situation by coupling those with more experience with the
relatively inexperienced students.

5 · Extreme Programming 81

Test first coding thus gives you:

� a complete set of tests for all code produced (as you created the tests first).
� simplest code that passes all tests.
� a clear view of what code should and should not do.
� a simple way of checking that refactored code has not altered functionality.
� a great deal of “documentation” explaining what a particular module should

or should not do.

Returning to the actual tests themselves, there are in fact two types of tests that
are being referred to when XP discusses testing, these are Unit Tests (produced by
programmers) and Acceptance tests (developed by customers and end users).

The developers write the unit tests as they are developing the source code.
In many XP projects, some form of automated unit test framework is used. For
example, in Java projects, it is most common to use the JUnit unit test framework
that is discussed later in this book.

In turn, customers should write the acceptance tests when they write the user
stories. These acceptance tests are usually written from the perspective of the end
user and thus may be harder to “prove.” However, depending on the application,
it may be possible to provide some form of acceptance test tool that will allow the
acceptance test to be automated.

Whatever form the tests actually take, all code must pass all unit tests, before
development is allowed to proceed. If unit tests are automated, then it is possible
to use tools such that as a new build is created, it can automatically be tested
before code is checked into the central source code repository. Tools that support
this sort of behaviour include ANT (the Java source code build engine), CVS (the
version control and source code repository) and JUnit. We shall return to such
tools later in Chapter 13.

5.4.5 Refactoring

Refactoring is that art of refining a system’s implementation without changing its
functionality. This may seem unproductive, after all you have expended effort on
modifying an existing system (which must have passed all its tests; otherwise, it
should not have got to where it is) without changing what it does. However, there
are two points at which refactoring should occur which help to elucidate why
refactoring is important. The two points at which refactoring should occur are:

� Before implementing a new feature. The refactoring performed at this point
may make it easier to add the new feature.

� After implementing a new feature. Refactoring at this point may help to make
the resulting solution simpler.

Thus, you refactor to improve the design and implementation of the system
as it progresses. You are therefore not refactoring for the sake of it, but because a

82 Agile Software Construction

new feature leads you to believe that it is necessary. That is, you refactor when the
system indicates to you that you need to. For example, having added a new feature
to the system, you may notice that it has a lot in common with another related
feature. For example, if we are building a court records system we may have a
Criminal Court Case object. At a later date, we may introduce a Civil Court Case
object. Criminal and Civil court cases obviously have their difference but they
also have a lot in common. Thus, you may notice that you have now introduced
duplicate code into the application. This breaks the “Simple Design” principle
and thus the system is telling you that you need to refactor.

At this point, you may decide that it would be useful to have an AbstractCourt-
Case object that is a parent of both the CivilCourtCase and CriminalCourtCase
objects. This results in a new class hierarchy being created and the CriminalCourt-
Case object requiring some refactoring to incorporate the new abstract class.

Refactoring may mean that you end up spending longer implementing a feature
due to refactoring, but the result should be that you aim to produce the simplest
solution containing clean effective code, with fewer potential problem areas/black
holes.

Refactoring certainly takes belief, trust and courage in what you are doing, but
to compensate the Test practise helps prove that any refactoring has not broken
anything in the system.

5.4.6 Pair Programming

For many, pair programming is what they think of when they think of XP. Es-
sentially, two developers working together at one machine, with one keyboard
and one mouse, write all software in the system. This is possible because the two
developers play different roles:

� One focuses on the method, class or interface, etc. being implemented (this
is the one with the keyboard and the mouse).

� The second focuses on the more strategic issues such as how well does this
solution fit with the rest of the system, what are its implications, is there a
simpler solution, do the tests cover all possibilities, etc.

The pairs that work together are not fixed, even for a particular task. Rather, pairs
change as tasks change and as the code being worked on changes. For example,
if you are working on an unfamiliar area of the code, then you might pair with
another developer who is more familiar with it. This may change as you move to
another area of the code. This may be within a task and thus you may pair with
several other developers within a single task.

The benefits of this include:

1. Two brains are better than one.
2. Knowledge of the system is spread amongst the team.
3. Test coverage may be better as two people will bring two different perspectives

with them.

5 · Extreme Programming 83

4. Experience is spread amongst the team. If the team is comprised of a mixture of
new graduates and developers with ten years experience within the application
domain, then by pair programmer, the experienced developers quickly share
their understanding of the domain, the technologies and the programming
language with the new graduates.

5. All code is dynamically reviewed by at least one other person who also under-
stands the scenario within which it was developed. This greatly helps to avoid
the type of review that ends up focusing on the way the code is laid out rather
than the quality of what has been produced.

5.4.7 Collective Ownership

Everyone owns all the system code! That is, all code is the shared responsibility
of all the developers on the project. Everybody thus has the right, and indeed
the duty, to make changes to any part of the system whenever they identify an
opportunity to improve it.

This is something quite different from saying that the code is owned by the
project (and thus no individual owns the code) as in this case, typically nobody
has responsibility for the code or has a “duty” to improve it.

It is also very different from saying that developers must take ownership of
their own code. In this case, each developer “owns” part of the system but not
anything outside their own remit. This often results in a culture of blame where
developers do their best to pass the blame for a problem to areas not within their
ownership. In addition, this approach may mean that requests for changes have
to be passed to the code owner when required. This code owner may then become
a bottleneck in the production process.

In XP, all of the developers are responsible for the code all the time. Thus, if
a problem is encountered, it can be resolved there and then. That is, the system
can be refactored to overcome the problem. We can be confident in the result as
all code must pass all unit tests before that code is integrated into the full release
and before development can continue. If some test is not passed, then the cause
of that failure must be identified and resolved before development continues.

Of course, not everyone will have the same in-depth knowledge of every aspect
of the system, but if developers are concerned about their level of knowledge
relating to a problem area, then they can pair program with someone who has
the requisite expertise. Thus, alleviating the potential problems that might occur
through unguarded revisions of existing code.

5.4.8 Continuous Integration

Every time a task is completed, the resulting code should be integrated into the
current build. To do this, the new code must of course, pass all unit tests (including
the new ones introduced with the new feature). Any problem encountered should
be immediately resolved. In general, any problem will relate to changes made to
support the new feature and will thus be easily identifiable. Once all tests are
passed, the new code can be released to version control and a complete new build

84 Agile Software Construction

created. This may happen every few hours and at most daily. Thus, we can be
guaranteed that the current build passes all current tests and that all the code in
the version control system is part of the current build.

If a problem cannot be resolved, then the new code cannot be released and
the programmers must return to the source code. They must then either rework
the code until it passes the tests (and meets the other XP principles such as
simple design) or throw away the code and start again. In this later case, the
assumption is that the developers did not know enough about the feature they
were implementing when they started (but they may do so now).

5.4.9 On-Site Customer

How many times have you looked at a requirements document, relating to the
task you are about to work on and thought “what does this mean?” or “yes, but
what should happen if they cancel at this point?” etc. These are questions that
an expert customer (for example, an end user or someone doing the job at the
moment) can answer.

In XP, such a customer should be part of the team so that such queries can be
answered quickly and effectively allowing for rapid responses and rapid feedback.

On-site customers can also help to resolve disputes (over business issues relating
to the system), help set small-scale priorities (is this feature or that feature more
important) and review the evolving system.

Note that a user story does not (typically) provide enough information on its
own for implementation to begin. Rather, the assumption is made that the on-site
customer can flesh out the details for the user stories with the programmers as
and when required.

5.4.10 Coding Standards

As people more between pairs, different areas of the system refactoring, produce
test cases, etc., it makes life a lot easier if everyone uses the same coding stan-
dards. This has numerous benefits that have been talked about elsewhere, but at
a simplistic level it means that:

� It avoids wasted arguments over silly things such as where brackets should
go (on the same line or the next line) within a Java statement.

� It means that everyone gets familiar with the style of coding to be adopted
which makes code easier to read.

� Simple guidelines such as “All constants in capitals” mean that as soon as
such a convention is seen its meaning is known immediately.

� Helps to create an environment where code becomes de-personalised.
� Helps make activities such as refactoring and pair programming easier.

One XP-specific feature of any coding standards is that they should help promote
simplicity. That is, the coding standards should help developers strive for simplicity
as part of their daily work.

5 · Extreme Programming 85

Coding standards can be written from scratch, evolve as a project developers or
taken from the internet. The advantage of using a publicly available set of coding
standards is that you are building on top of a well-tried set of standards (see the
Style guidelines available from http://www.planetjava.co.uk/). The key is to have
a set of standards and to adhere to them.

5.4.11 40-Hour Week

As a consultant, I have often been brought in to examine what is going wrong
with a project or a development team. One particular common thread is that
I will find that the actual developers are at fever pitch. They will be working
80 hours a week, be under a significant level of pressure and will often be made to
feel that they are not pulling their weight or that they are lacking commitment to
the project if they don’t work all weekend every weekend. In one case, the project
manager had explicitly planed that all developers would be working 80 hours a
week in order to achieve the delivery date set by senior management. Obviously,
in these situations there are a range of problems that need to be resolved, but at
least one of them is the amount of productive time a developer can actually put
into a project each week. In the case of the project where the project manager was
planning on going 80 hour weeks, as far as I could tell, the developers were being
drained; they all seemed exhausted, with no enthusiasm for anything, and weary.

Tired, drained, exhausted developers make mistakes. These are not the sort of
developers you want working on an XP project! An XP team should be enthusiastic,
full of energy and ready for the challenges facing them. Keeping the amount of
time they put in to a limit keeps everyone “fresh and eager” (Beck, 1999). Or to
put it another way, developers can only focus on developing code successfully for
a certain number of hours a week, beyond this your at best wasting their and your
time and at worst helping to introduce problems into the system. The 40-hour
rule isn’t exactly a 40-hour rule more a guideline as 35 or 45 hours might be
appropriate, but 60 to 80 hours every week certainly isn’t.

5.4.12 System Metaphor

In XP terms, the system metaphor is a story or view that expresses the overall way
in which the system will operate. It is typically less detailed than the architectural
design that you may have encountered for example, the system metaphor, if doc-
umented explicitly at all, will probably not take more than a few pages of A4 text.
In contrast, the system architecture, as described in the Unified Process (Jacob-
son et al., 1999; Hunt, 2003), may be documented by numerous UML diagrams
and extensive supporting literature. However, the system metaphor is intended
to fulfil one of the roles of the architecture, that of providing developers with an
overview of the core elements and how they fit together. The metaphor might
describe the system as being like a “conveyor belt along which information travels
and is processed by various units,” etc. Overall, the metaphor should help people
understand how the system fits together rather than provide a detailed (or very
accurate) description.

86 Agile Software Construction

5.5 What Is So Extreme About Extreme Programming?

When you look at the twelve practises that define Extreme Programming or XP,
you will probably notice or at least comment on, the fact that there is very little
new here. Many of the practises are, or have been incorporated into, described by,
or presented as, parts of various existing software engineering methodologies. So
what is so different, so extreme, about Extreme Programming? The answer lies in
a number of places:

1. Extreme Programming is very lightweight – it really only focuses on the pro-
gramming of a software system.

2. Extreme Programming takes the best practises to their ultimate conclusions.
Kent Beck says that he pictured each of the practises as a knob on a control
board and turned each knob up to maximum and looked at what happened.
What happened was XP!

If we consider the second point in more detail, the concept goes as follows:

1. If code reviews are good, then review code all the time (pair programming).
2. If testing is good, everybody will test all the time (unit testing), even customers

(acceptance testing).
3. If designing is good, then make it part of what everyone does every day (refac-

toring).
4. If simplicity is good, then always strive for the simplest effective solution (i.e.,

the simplest solution that works).
5. If architecture is important, then ensure that everyone is involved in creating

and refining the architecture all the time (system metaphor).
6. If integration testing is good, then integration and testing should be an on

going (daily or even hourly) thing (continuous integration).
7. If short iterations are good, then make them as short as possible, i.e., hours,

or days not weeks and months (the Planning Game).

As you can see from this, each principle has been taken to the Extreme and this is
what makes Extreme Programming Extreme!

5.6 Review

It is interesting to note how interrelated all the practises are. Each one on their
own can be seen to be (potentially) fatally flawed. For example, allowing anyone
in the team to change any aspect of the system at any time could lead to chaos
and possibly anarchy! But it is not an isolated thing; rather it is part of the twelve
practises of XP. If all twelve are adopted, then allowing such changes by anyone
becomes practical. Such an activity is supported by practises such as Testing,
Continuous Integration, Pair Programming, etc. This is illustrated in Fig. 5.1.

5 · Extreme Programming 87

Simple Design

Refactoring

Ownership

Pair Programming

Testing

Continuous Integration

Fig. 5.1 Practises supporting the ability to fix a problem when it is found.

For example, if a problem is noted in one area of the system by John, then:

1. Collective Ownership means that it is John’s responsibility to fix it.
2. Pair Programming allows John to work with Steve who is an expert in the

problem area.
3. Simple Design means that the solution was already the simplest possible and

thus should be clear and easy to understand (relatively).
4. Refactoring allows the change to be made and verified. That is, the revised

code can be guaranteed to have been kept as simple as possible and to have
not altered the functionality (as it should have passed all the tests).

5. Testing guarantees that the system still functions as before and that we have
not broken anything else during the refactoring.

6. Continuous integration ensures that the new code is only integrated once it
has passed all the tests, but that it is then immediately part of the evolving
solution.

This is at least part of the reason why you can’t truly be said to be doing XP unless
you have fully adopted all twelve XP practises. That is, the whole is far greater than
the sum of the XP parts and you thus get only a stable XP solution if you adopt
all twelve practises.

6
Putting XP into Practise

6.1 Introduction

We have already said that XP is not a design method. Indeed, all it actually is
in any formal sense is a set of four values that have motivated twelve practises.
Some of these practises are more clearly oriented towards a process than oth-
ers. For example, the planning game practise, as we will see, has a lot to say
about itself. Other practises, such as the 40-hour week are rather more like guide-
lines, than a process. That is, you either over work your developers doing 60–80
hours a week or you don’t. There is not a lot to say about how you limit the
number of hours worked to 40 (exception management buy in and developer
acceptance).

Therefore, at times, XP can seem deceptively simple. When you follow the set
of twelve XP practises, you’re away. That is, if you follow these twelve practises
(which seem fairly straightforward) you will be doing XP. However, this is a
deceptively simple approach. I have witnessed projects that claimed to be doing
things the XP way and at a first glance they were certainly paying lip service
to the XP practises. But, they had failed to really comprehend what XP was all
about or truly understand how to implement XP within a software development
project.

We will return later in this book to the subject of how you can introduce XP
into a larger project methodology for larger applications, or how you can apply
a software development process to an XP project. For the moment, we will focus
purely on how to implement XP itself. We will not worry about anything outside
of what XP offers and will contend ourselves with addressing the issue of how do
you make XP work for real.

In this chapter, we will look at how XP projects are planned, we will then
consider how developers can adopt a test first coding approach. We will then con-
sider how to make pair programming work. Following on from this, we will
discuss refactoring and how to start to refactor. We will then consider how
a number of other XP practises can be implemented including how to put
into practise continuous integration, employ simple design and produce small
releases.

89

90 Agile Software Construction

6.2 Planning XP Projects

Planning XP projects – the very idea! It is a common misconception that XP
projects do not need to be planned. Even reading the last chapter may or may not
have helped this view. This may partly be because the planning aspect of XP is
known as “The Planning Game” (ah ha it’s a game so not to be taken seriously) but
as we said, if this is a problem then consider this as the Project Planning Workshop
(which to be fair is a rather more accurate description of its purpose). Secondly,
however, they may remain un-convinced because the nature of project planning
changes. Rather than planning out the whole project in great and fine-grained
detail, the overall project plan is left rather vague and high level and detailed plans
are only created on an iteration-by-iteration or release-by-release basis. From
personal experience, I can vouch that not only does this approach work very well
but that it actually involves far more planning, which is more accurate reflecting
what is actually happening on the project and is reviewed more often than the
traditional approach.

So what is the aim of the game/planning workshop? It is to decide on the scope
and priorities of the project and of the releases. It is also to estimate the cost
of various features required by the software and to schedule those features into
releases. Note that I am using the term feature here as depending on the type of
planning being done, we may be dealing with high level user stories, lower level
user stories or tasks to implement user stories.

The XP project lifecycle is presented in Figure 6.1. This diagram illustrates the
various planning stages and implementation stages within a typical XP project.

Initial User
Stories

Initial Planning
Game

Elaboration
Process

Overall
Plan

System
Metaphor

Detailed
User

Stories

Release Planning
Game

Elaboration
Process

Release
Plan

Iteration
Planning

Iteration
Plan

IterationRelease
Acceptance

Tests

Initial Project Planning

Iteration / Release planning

Implementation

Final Release

Fig. 6.1 XP project lifecycle.

6 · Putting XP into Practise 91

For example, it starts with an initial project planning process during which the
overall plan of the project is roughly sketched out. This is followed by one (and
typically more than one) release planning process where the contents of a release
is planned and the tasks performed in the iteration to implement the release are
also planned. The release is then implemented and the results of this process fed
back into the planning for the next iteration.

Note be careful when examining the diagram in Figure 6.1. This diagram may
suggest to the un-initiated sequence of events that flow naturally from one point
to another. The actuality is rather more incremental, iterative and cyclical than
that. For example, if it is realised during an iteration that the project plan and
reality are drifting far apart, than an XP project may at any time return to any stage
of the planning process to consider what action to take and re-plan the project.
Another important point to note is that for those working on an XP project, they
may not view life to be ordered as indicated in Figure 6.1. This is partly because
it is the iteration step within the implementation that is their main focus and
partly as indicated above, real life isn’t as ordered as this. However, it makes it
easier to consider how an XP project is run by making the process explicit in this
way and it is what happens within an XP project but in rather more interactive
fashion.

This planning process will be elaborated upon in the rest of this section.

6.2.1 Playing the Planning Game

The planning game has only two conceptual players; these are the “Business”
and “Development.” The business is formed from those stakeholders who can
specify the operation of the system. Development is formed from members of
the development team relevant to the features being discussed. The number and
size of each “team” may change over time. For example, earlier during initial
requirements gathering, there may only be one or two in each team. Here, they
are just trying to determine what the system should do at a relatively high level.
Later on, when detailed planning is required, both teams may grow in size. For
example, all the developers involved in a release may be involved in the planning
game for that release.

A key issue, and one which takes time to achieve, is that both sides must trust
each other. The Business must trust the Developers to give honest and accurate
estimates. The Developers must trust that the Business will give them the infor-
mation they need and will work with them to create the plan.

The game also has rules that aim to help the two teams work together to produce
the plan. These rules can help to gain the mutual trust and respect essential to
successful planning (and so often lacking in many projects).

6.2.2 The Goal of the Game

The goal of the planning game is to maximise the value of the software produced
by the team.

92 Agile Software Construction

6.2.3 The Strategy

The main strategy of the game is to invest as little as possible to put the most
valuable functionality into production as quickly as possible, but without com-
promising the required product quality.

The last sentence is worth dissecting a little. Firstly, the strategy is to “invest
as little as possible.” That is, to get the job done as quickly as possible without
incurring unnecessary overheads. For example, the idea of not implementing
features today which may or may not be required tomorrow.

Secondly, the aim is to “put the most valuable functionality into production.”
Few projects have unlimited resources and unlimited time. If they did, then there
would be no problem for implementing anything a user might require. Instead,
there are usually financial and time constraints on a project. These limit what can
effectively be achieved. Thus, we want to use the time and resources available to
us to implement those features that will be of most benefit to the end user.

Thirdly, we want to do all this “without compromising the required product
quality.” Obviously, we want the software we produce to do its job without causing
the users any difficulties. But note the use of the phrase “required product quality.”
Recently, I was involved in two projects that were managed in an agile manner.
One was for a UK government office and involved implementing a large piece of
client side software to be used over the next several (and possibly many) years.
At the same time, we were asked to implement a very small web application that
would be used as a placeholder for a much larger system that was to be developed
afterwards. It was anticipated that the web application would only have a lifetime
of between 1 and 3 months. This raises the question what is the “required product
quality” for these two systems. The quality of the first system needed to be high,
the quality of the second needed to be acceptable (i.e., not fault ridden but not as
fault tolerant as the first system).

6.2.4 The Game Pieces

The pieces used by the two players are the “user stories” described in the last
chapter. These are written down on index cards and moved around during the
game. Of course you do not necessarily need to use index cards, user stories can
be written down on white boards, scrapes of paper, entered into a software system
for recording and reference. However, in general, they are put onto things (e.g.,
index cards) that can be easily placed in piles, written on, thrown away, sorted,
etc. Only once they are accepted, as genuine user stories are typically entered into
a computer. This is partly as they are harder to view, manipulate, sort, etc. and
partly because once something has been entered into an electronic media they are
often harder to throw away (then there seems to be more investment into them).

6.2.5 The Players

As mentioned earlier, there are only two players in the game “Business” and
“Development.” I like to think them as teams, because they are rarely a single
person (apart possibly from very early on in the life of the project). The implication

6 · Putting XP into Practise 93

of them being teams is that they are a gestalt personality. That is, each team is
comprised of the set of personalities of its constituent members. This is important
as different people operate in different ways and will have different motivations
and it is useful to keep all this in mind when “playing” the game.

As was mentioned earlier, Business is made up of a collection of those individ-
uals (project stakeholders) who can make decisions about what the system should
do. In turn, Development consists of those people who will be involved in im-
plementing the system. This includes, but is not limited to, programmers. It may
also include database administrators, system support technologists, networking
professionals, etc. This may surprise some, as XP (or eXtreme Programming)
may seem to be focussed on the programming aspect of a project. However, to
ignore the other aspects of a typical modern software system is to invest in future
problems. Depending upon the application, non-programmers may be as much
part of the team as the programmers and may be as vital to the success of the
project as the programmers themselves! How many applications are built today
that do not involve at least one of a database, a network, some operating system
requirements, low level device drivers, or legacy application. In many cases, sys-
tems involve many of these. More than one apparently successful on-going XP
project has foundered because of its dependency on the database team who were
not geared up to their way of working!

Returning to the two “players.” The members of the two teams should be
distinct. That is, no one person should be a member of both the Business and
the Development. Although this may seem straightforward, these definitions can
be blurred. If a software house is building a bespoke system for an external client
then it is often very easy to say who should be “Business” and who should be
“Development.” However, for “off the shelf” shrink wrap products, the “Business”
may be the marketing department, internal business analysts or a internal “product
owner.” These are all people who are internal to the company and may be internal
to the department within which the software is being constructed. For systems
to be used internally to a company, the development team may find that they are
building systems for themselves (or at least for another group of developers). In
these cases, “expert customers” need to be identified and kept in this role for the
duration of the planning game.

6.2.6 The Moves/Playing the Game

There are three stages to play the game.

1. Exploration – Determine new user stories of the system.
2. Commitment – Decide which features will be addressed in a particular release.
3. Steering – Update the plan as development progresses.

These three phases are iterative and may interact. For example, in the steering
phase it may be noticed that some new user stories are required. This may lead
to the exploration phase being re-run for the new user stories, followed by the
commitment phase, before a revised plan is produced by the steering phase.

Each of the three phases will be discussed in more detail below.

94 Agile Software Construction

Exploration Phase

Within the exploration phase, the game tries to help the team identify what the
system should do. To achieve this, this phase has three steps (or moves). These are:

1. Write a story.
2. Estimate a story.
3. Split a story.

Each of these is elaborated upon below.

Write a story. The Business starts talking about what the system must do. At some
point, these descriptions can be written down as user stories (e.g., on index
cards). Often initial ideas may best be written on white boards, etc. before
being committed to the cards (or electronic media).

Estimate a story. Development then estimates how long it will take to implement a
story. If Development cannot estimate the story, then it can ask for clarification
or request that the story be split up (to make it easier to consider).
Early on during initial project planning (during the initial planning game) you
often are only really trying to get a ballpark figure during estimating. Later
(during detailed release planning) you will find that you will need greater detail
relating to the user stories.

Split a story. Users are often not good at realising how much work may be involved
in a particular system feature. In turn, developers are often not very good at
immediately realising what a user wants. As a result, user stories may vary in
size and complexity. Typically, user stories require refinement, but large user
stories (in terms of complexity or duration) need to be broken down into
shorter less complex stories. As a rule of thumb, no single story should be large
enough that one programming pair would be unable to complete it within one
iteration.

Before we leave the exploration phase, a quick word on Estimating. Estimating
how long something will take in software development is notoriously difficult
and error prone. XP recommends that you estimate in what Kent Beck calls “Ideal
Engineering Time” (Beck, 1999). This form of time is comprised of “Ideal En-
gineering Days.” An Ideal Engineering Day (or IED for short) is the amount of
development that could be achieved in a single day by the average developer with-
out any interruptions, where there are no dependencies (you can just get on with
what you need to do) and no unforeseen interruptions. Others have used the term
“Ideal Engineering Units” (2002) as you will then reconcile the IED with reality
during the “Set project velocity” step of the commitment phase. During this step,
you say that reality isn’t as simple as all that and that it is likely that the developers
will get interruptions due to meetings, previous projects, other developers needing
help, etc. Thus, the time taken to produce one IED may be anything from one real
day to several days, etc. In some cases, an IDE may be matched to one half-person

6 · Putting XP into Practise 95

week or more, etc. (thus the reference to a unit). As the project progresses, you
may need to revise the mapping between the IED and real time.

Commitment Phase

During this phase of the game, Business must identify what will be in the current
iteration and when the next release will be. For their part, Development must
commit to the agreed duration and the content of the release. If this situation
cannot be met then either the timescale of the release must be changed, the
content of the release altered or the number of developers increased.

The steps presented to reach agreement within the game are:

1. Sort by value.
2. Sort by risk.
3. Choose scope.
4. Set project velocity.

These steps are described in a little more detail below:

Sort by value. The user stories are sorted by Business into three piles. These piles
represent those stories in the:
1. must have category,
2. should have category, and
3. nice to have category.
This effectively gives each story a relative priority with regard to the three
categories. The implication is that, from the Business perspective, the user
stories in the “must have” category are more important than those in the “should
have” category. In turn, the “should have” category are more important than
the “nice to have” category. Thus, an XP project development should focus first
on the “must haves” as these will add the greatest value to the Business.

Sort by risk. The user stories are further sorted by Development into piles for:
1. confident estimates,
2. reasonably sure estimates, and
3. cannot estimate.
This is useful because we can then see those user stories that the Business believes
are “must haves” and how sure Development is of the estimates given. The result
of this is that the planning game may return to the exploration phase to try to
clarify any issues relating to the estimation of user stories. Some stories may
need to be left for further investigation after the planning game has concluded.
Choose scope. Business must select the final set of user stories that will form
the next iteration or release. The only constraint on what comprises a release
is that the first release should be complete in terms of end-to-end processing
(although very limited in functionality) and that each subsequent release should
add something in terms of value to the Business (for it to be considered a release).
Note not all iterations may result in a release.

96 Agile Software Construction

Set velocity. This step maps the Ideal Engineering Unit (IDU) into reality and
takes into account the amount of time developers will actually be productive,
their experience, etc. It thus provides a way of mapping ideal estimate periods
into elapsed actual time.

As can be seen from the above steps, this phase may proceed sequentially, with
Business ordering the relative importance of various user stories. Next Develop-
ment will determine how well they can estimate those stories. Finally, Business
will decide on which of the stories will comprise a particular release (or releases).
The reality is that this is a far iterative process than that. In general, Business will
revise their “piles” as the game proceeds, influenced by Development’s estimates,
the need to split stories and the discovery of new stories.

Steering Phase

In the real world, plans often change. This may be for a wide variety of reasons
including (but by no means limited to):

� changing requirements,
� new requirements,
� changing priorities,
� incorrect estimates,
� changing resources (developers leave and new developers join a project with

different skill sets).

All this means that over the lifetime of a project, a plan may require frequent and
extensive revision. Indeed, a living project plan should be able to show a history
of changes, otherwise it is likely to be out of date and may be of little use. Even
within a single XP iteration, these factors may become an issue and certainly across
iterations may well be very relevant. The XP planning game explicitly recognises
this within its steering phase.

The idea in this phase is that you are helping to steer the project forward. In
doing so, you are encouraged to explicitly address the above issues.

The steps in the steering phase are:

1. Iteration planning.
2. Project recovery.
3. Identifying a new story.
4. Project re-estimation.

These four steps are considered in more detail below:

Iteration planning. XP states that you should only plan the current iteration in
detail. Therefore, at the start of each iteration (e.g., every 1–3 weeks) Business
plans the user stories to be implemented and Development plans the tasks
needed to implement those stories. We will discuss iteration planning in more
detail later in this chapter.

6 · Putting XP into Practise 97

Project recovery. As the iteration progresses, if Development realises that it is ahead
or behind schedule, it can ask Business to help it to re-prioritise the user stories
to implement.

Identifying a new story. If a new story is identified and determined to be necessary
for the current release then it can be written, estimated and added to the itera-
tion. As a consequence, the remaining user stories will need to be reviewed and
some discarded in order to achieve the release.

Project re-estimation. If Development feels that the plan has been shown to bear
little reality to the real world, then the whole iteration can be re-planned,
user stories re-estimated, the project velocity reset and the implications for the
project timetable considered.

As you can see from the description of these steps, they are at a very different level
to the steps focussed on user stories of the exploration and commitment phases.
This phase is also likely to happen at some point during (or at the end) of an
iteration. Whereas, the first two phases occur at the start of an iteration. Thus, the
planning game as an XP practise is broken into various parts that are performed
at different points in the lifetime of the project.

6.2.7 Planning Your XP Project

So how do you use the planning game to plan you XP project? What do you do
when and how? In this section, I will look at how the various types of planning
game fit together to help you plan your XP project.

There are actually two forms of the planning game:

1. The initial planning game, and
2. The release planning game.

In general, there is also another step between these, which is called variously
the “Elaboration” phase, and the “Exploration” process. To avoid confusion with
what has already been described, we will call it the “Elaboration” process. The
elaboration process allows clarification of user stories to take place outside the
constraints of the game. Thus, a typical XP project might be planned in
the following manner:

1. An initial planning game (aims to get overall view of project);
2. Initial elaboration process (focusing on high level user stories);
3. Release 1 planning game;
4. Release 1 elaboration process (if required);
5. Plan iteration 1;
6. Release 1 iteration/implementation . . . ;
7. Release 2 planning game;
8. Release 2 elaboration process (if required);
9. Plan iteration 2;

10. . . . Release 2 iteration/implementation . . . ;

98 Agile Software Construction

11. . . .
12. Release n Planning game;
13. Release n Elaboration process (if required);
14. Plan iteration n;
15. . . . Release n iteration/implementation.

The Initial Planning Game

The initial planning game focuses on what the system as a whole should do.
It considers all user stories that are in scope (and indeed what that scope is). It
happens at the start of the project and may reconvene at various points throughout
the lifetime of the project to review the scope of the system, the set of user stories,
their relative priorities, etc.

The Release Planning Game

The release planning game focuses on the contents of a release or iteration. It has
the same steps as the initial planning game but the level of detail that needs to be
considered is much greater. During the initial planning game, the overall plan for
the project should have been roughly planned out. At the start of a release, the
details of what will be done in that release need to be determined. This means that:

1. User stories need to be fleshed out and may need to be broken down into finer
grained stories (in order that they can be implemented).

2. Detailed estimates of the stories need to be obtained.
3. The user stories to be implemented as part of the release need to be confirmed,

revised or modified as required.
4. The project velocity may need to be revised. For example, as the development

team become more experienced in XP and the application in which you may
find development speeds up.

On completion of the release planning game it may be necessary to explore some
of the user stories (or the knockons of the user stories) further. This can happen
during the elaboration process. Once this is completed, the iteration tasks will be
planned in detail during the iteration planning process.

The Elaboration Process

The elaboration process follows the initial planning game, and typically on a
smaller scale, a release planning game. During this phase, research is carried out
to clarify user stories in order to estimate, clarify requirements, or technical issues.
The aim of this is to:

� Lower the risk of bad estimates,
� Experiment/prototype different solutions,

6 · Putting XP into Practise 99

� Improve the development teams to understand the domain/technology,
� Ensure procedures and processes required are in place.

Between the initial planning game and the first release planning game, the elab-
oration process may last anywhere from a day to a month to several months,
depending on the development teams level of expertise in the domain in ques-
tion, in the technologies being applied and in the methods being used. Between
releases, the elaboration process is likely to be shorter, typically in terms of days.

Iteration Planning

There are two issues to consider when planning an iteration. These are (1) deter-
mining the size of an iteration; (2) determining what should be done within an
iteration to implement the user stories.

Size of an iteration. Ho do you determine how big an iteration should be? How
long is a piece of string? The answer is that an iteration needs to be big enough
to allow either a new release to be created that adds value to the business or
large enough that you are able to make significant progress. However, it should
also be small enough that the development does not move on too far without
being reviewed (by another release planning game, etc.). The classic length of
time for an XP iteration ranges from 1 to 3 weeks. Generally, XP projects are
quiet small involving between 2 and 6 and generally at most 10 developers. This
limits the amount of work that can be done within 2–3 weeks. For example, if
you have a team of six and your iteration is of 2 weeks duration, then at most
you have 12 person weeks to play with.

Planning the iteration. If the release planning game identifies what new features
should be added to the evolving system in the current iteration, then the iteration
plan defines how those features will be achieved.

During the planning of an iteration, user stories are converted into tasks which
will result in the story being implemented. One user story may be implemented
by a single task or by many tasks. One task may support several stories; in turn
one story may be implemented as one or more tasks. Some tasks may not directly
relate to any user story, such as a task to move to the latest version of Java.

Iteration planning usually incorporates the following phases:

1. Evaluation of the last iterations lessons learned, changes to be made, etc.
2. Review of user stories to incorporate into the iteration.
3. Task exploration during which tasks are written for user stories. These tasks

may be broken down into smaller tasks to help with planning and estimating.
This generally happens when a developer volunteers to break a user story
down into one or more tasks. They may offer to do this because they believe
they know how to address that task. To break the user story down, they should
find at least one other developer (pair-programming style) to help with the

100 Agile Software Construction

analysis. As this step progresses, they may or may not need input from the
customer or other developers. Therefore, the on-site customer can be vital to
the success of the iteration planning process.

4. Task commitment during which tasks are estimated, load factors determined
and balancing takes place.

5. Finally, the iteration plan is verified.

The whole process should take not more than 1 or 2 days (and may take consid-
erably less). The end result is that a series of tasks is identified, prioritised and
ordered. Pair programmers can then address these tasks during the iteration. The
idea is that developers select their own tasks to do by selecting the highest-level
priority tasks first and start on them. There are two approaches to this, one is
the “Select one task at a time” and the other is known as “Fill your bag.” In the
first approach, a developer only selects a single task to address. When they have
completed that task they will select another task and so on until either there are no
tasks left or the iteration is completed. With the “Fill your bag” approach, a kind of
round robin task selection process takes place. During this, each developer selects
one or more tasks that they would like to do. In general, the developers get first call
on the tasks that they identified, analysed and estimated. This process continues
until there are no tasks left or the estimates match the duration of the iteration.
Each developer then knows the set of tasks that have been nominally allocated to
him/her for the current iteration. This may change as the iteration progresses as
some developers may become bogged down in a particular task while others may
complete their tasks faster than expected.

Summary

Thus, the project first outlines the whole scope of the system and then outlines
the iterations and releases. The team then elaborates on the user stories (focussing
on the ones they don’t know how to estimate). They then plan an iteration and
implement it. Within an iteration, it is the tasks that implement a user story that
are considered in detail.

6.3 Test First Coding

If anyone reading this does not believe that it is good to do unit tests before releasing
it to your colleagues for integrating into the current build, please put this book
down and pick up a first year undergraduate text on software development and
start there instead!

You may well wonder why I have just put that sentence here, well, at least one
project I know used the “if I compile then you can release it into the current build”
rule as sufficient evidence of testing – with obvious and predictably disastrous
results. So, unit testing all code before releasing it, is not a universal truth!

However, it should be! When you have written some code that is to be used by
the rest of the project, you should be sure that it works. Making these unit tests

6 · Putting XP into Practise 101

part of what you release into the central source code repository of your project
also means that if anything changes anyone can re-run your unit tests and check
that your code still works (even if you are not around). Again, this may seem
self-evident but the inclusion of unit test code within your version control system
is a trick that all too often seems to be overlooked.

At this point, hopefully, we are all agreed that when you write code you should
also write the unit tests that go with it to verify that code. The next step towards
test first coding is therefore not a huge one. That is, you should write the tests
before you write the code. This may/will seem strange at first, but over time it
does become second nature. Indeed, from my own personal experience, it can
become quiet liberating, allowing you to clearly focus on what the code needs to
do before determining how it will be done (indeed I continue to use this practise
whether I am involved in an XP project or not). Test first coding also ensures,
of course, that all code produced does have a relevant set of unit tests available
for it.

In many ways, the unit test first approach is an obvious extension of an approach
I have been pushing within Java for years. I used to say that you should write the
Javadoc (the comments picked up by the Java Javadoc tool) for your Java classes,
interfaces and methods before you write the implementation. If you couldn’t write
the Javadoc (i.e., can’t explain what the class, interface or method does), then you
shouldn’t write the code. The reason for this is that you clearly did not know what
the method should do and thus couldn’t write it. By extending this to the unit
test, we have something that is both executable and verifiable.

6.3.1 How to Write Tests First?

So how do you move to an approach in which you write the test first? There is no
hard and fast answer, as this question is a bit like “so how do you decide what to
program first.” But the following points try to give a flavour of how I (and many
others) try to go about test first coding.

1. Think about what the code should do and try to ignore, for the moment, how
it will do it. This can be very difficult for programmers to get to grips with,
not least because in general their focus has always been on “how.” It can feel
like a leap of faith, or a bit like wandering around in the dark (with your eyes
closed!). However, if you persevere with it, you will see that in order to do the
“how,” you really need not think about the “what” first anyway. One way to
do this is to write down, for example as Javadoc, what the test or tests will do.
This removes the need for the moment for code and classes, interfaces and
methods that don’t yet exist.

2. Now write a test that will use the classes and methods you haven’t yet imple-
mented! This will also seem strange at first. How can you write a test using
code that doesn’t yet exist! It is possible. If you can determine what the classes
involved will be called, what the method signatures should be, what parameter
values should be involved then you can write the test case. This test case will
not compile (obviously) but it should at a later date. If you use tools such

102 Agile Software Construction

Fig. 6.2 Creating a simple test in Eclipse.

Fig. 6.3 Eclipse offers to create an as-yet undefined class.

6 · Putting XP into Practise 103

as Eclipse, this can be made much easier. For example, in Figure 6.2, I have
started to create a simple test class called TestForLabels using Eclipse. At this
point, there is no behaviour defined for the main method in the test case (note
I am purposely not using a framework such as JUnit here as I want to keep
things as simple as possible for this example).

In Figure 6.3, I have added a statement that creates an instance of a class that I
have yet to define. Eclipse notices this and prompts me with a set of options. Two
of these options allow me to either create an interface or a class. In this case Labels
is a class that I want to instantiate (and interfaces cannot be instantiated). Thus, I
will select the option allowing me to create the Labels class (at the click of a mouse
button!).

Figure 6.4 illustrates the class creation dialogue presented by Eclipse to allow
me to create a new class Labels. It allows me to select the parent class, interfaces
to implement and whether I want any abstract methods to be implemented and
constructors provided. Using this feature, I can quickly create many of the stubs
I would need for a new class.

Figure 6.5 illustrates what the (very simple) resulting class looks like in Eclipse.
At the moment, this class will compile but has no methods (as I am keeping things
simple).

Fig. 6.4 The Eclipse class creation dialogue.

104 Agile Software Construction

Fig. 6.5 The initial “implementation” class with no methods.

Fig. 6.6 Adding some behaviour to the test class.

6 · Putting XP into Practise 105

I can now return to my test case and add some more to it. In Figure 6.6, I have
added the following statement:

labels.setText(“John Hunt”);

This calls the method setText on the newly created object referenced by the local
variable labels. But setText does not yet exist. I have just referenced it within the
test harness.

Again Eclipse notices this and prompts me to allow it to create this method for
me. This is illustrated in Figure 6.7. It even gives me a preview of what it would
generate in a box to the side of the editor.

The result of Eclipse auto-creating the setText method is presented in
Figure 6.8. This method takes a string as a parameter and does nothing with
it. But that’s okay; it is enough to allow the test harness to compile. We can take
this further by entering another method into the test case example requiring the
text to be returned for the label, using a getText method. The result of Eclipse
auto-creating this method is presented in Figure 6.9. Note that this method re-
turns a value, thus a default value is defined in the return statement. This will not
be correct in all situations (and indeed should not be correct in all situations).
This is fine, as it is enough to allow us to compile the test class.

The key thing here to notice is that we have focussed on the class and the
methods it should provide and used those to build our test harness. We have
allowed Eclipse to create these stub classes and methods for us along the way.

Fig. 6.7 Eclipse prompting to create the undefined method.

106 Agile Software Construction

Fig. 6.8 The method auto-created by Eclipse.

Fig. 6.9 The class with two auto-created stub methods.

6 · Putting XP into Practise 107

Eclipse has kindly placed stub code within the methods that allow everything to
compile (but not more). Thus, by doing this, you can design and generate the
framework of the code being tested as you create the unit test itself!

3. If you haven’t already done so, then write the stub code for the class(es) being
tested. As mentioned above, tools such as Eclipse may do this for you, however,
if you are using tools such as Emacs you will have to do it yourself.

4. Now put the code you have created for the test into whatever project code
repository you are using. This includes your test code. If you are using a
framework such as JUnit then add your test to that as well.

5. Now run your newly created test against the stub code. It should fail but
that’s okay – you haven’t implemented the methods you are testing yet! This is
actually an important step (although at this point you may think it redundant).
It does two things, firstly it validates that the test will run and secondly it
ensures that the test will fail. If the test passes then something is likely to be
missing from your test. For example, if your test only ever checked that the
result returned from the Labels class was a null string, then that would not be
a very good test. It would be better to check that the value set for the text was
the value returned by the get method!

6. Now you are in a position to actually write the implementation of the methods
being tested. This may lead to creating additional supporting methods but
that’s okay. However, your focus should be on writing only enough code
required to pass the test. This firstly focuses your efforts on exactly what is
needed; ignoring additional bells and whistles that you think might be useful
in the future. It also helps you to produce the simplest code that meets all the
requirements. After all, if it passes all the tests then it meets its requirements
no matter how simple the code is.

7. Re-run your tests against the newly implemented methods. If all the tests pass,
then continue. If not returned to step 6 and revise your code as necessary.

8. Now re-run the tests for the entire system. If all tests pass, then add the changes
in your current test suite and implementation to your code repository (your
tests may have needed revision as you implemented the classes and methods).
Now you can continue. If one or more of the tests fail then you must return
to step 6 and revise your code as necessary (as it must have been your changes
that caused any tests to fail).

9. Refactor your code for clarity and to remove any duplication. Return to step
7 if you are sure that no refactoring is required, then you have finished the
current test. Return to step 1 for the next test.

You may notice that you are repeatedly encouraged to re-run your tests during
the above steps. This may seem like overkill, but stick with it. You should try to
move to a position where you naturally “make a change/run a test” as your normal
mode of operation. This ensures that you never move far from any problem and
that you are moving in small but perfectly formed steps.

An additional benefit of test first programming is the confidence it installs in
developers. This is because at any one time, the latest version of their code will
have passed all previous tests and it is only the changes they are making now which
may cause a test to fail.

108 Agile Software Construction

6.3.2 What to Test?

Okay so testing is good and writing tests first is better. Great, but what should
I test? Should every single method in every class in my application have a test
written for it? Probably not! Should I only write tests for major subsystems –
again probably not! So, what should I test?

As with many things in software, there are no hard and fast rules for what you
should test, but here are some XP-oriented guidelines:

1. Write tests for any tasks being implemented.
2. Write tests for any classes or combinations of classes that are non-trivial and

could easily be broken. For example, if one particular class implements a
complex algorithm to find sneak circuits within electronic relays, then write
tests for that class even though it may only be one element of a larger module.

3. Avoid writing tests for methods that just call another method, e.g. delegate
methods, if the called method already has a test written for it.

4. Assume that more tests are better then less and that no one will complain
about having too many tests, but that people will complain if an important
test is missing.

5. Write tests that instil confidence in the system. For example, if one area of
the system is invoked by many others (such as a data access management
subsystem), then having a set of tests for that area adds to the confidence of
those using it.

6. Add tests that will help cover areas of the system being modified. If you are
refactoring some code, and feel that one or more tests are missing then add
them.

7. If you happen to notice that a suite of tests for a particular module, subsystem
or class appears to be missing in one or more tests, then add them.

As you will notice from the above, testing is not expected to be perfect first time
around and that the suite of tests you have are expected to grow over time as new
tests emerge and your ability to identify tests grows (as your experience with XP,
the application, the domain, the technology, etc. increases).

Note that an important point to remember is that once you have identified a
test and defined it you must run it. If the test fails, then either the test is wrong,
so fix it or the implementation has a bug in it, so fix it. This is true even if the
test you have added is for some class that you were merely examining and hadn’t
originally planned to work on!

Finally, remember that even poor tests are better than no tests at all and that
over time the test suite will improve (i.e., from iteration to iteration).

6.3.3 Confidence in the Test Suite

The developers must have confidence in the test suite created. Not only is this
important for their belief in the system but it is also particularly important for
two other importance practises, namely:

6 · Putting XP into Practise 109

1. your ability to refactor and prove that you have not changed the functionality
of the system;

2. the guarantee that if you code in a test first manner, that you have produced
the simplest code that covers the requirements.

However, you should not get hung up on the quality of the tests, just do the best
you can. It is very unlikely that you will never miss out some test condition –
that’s life but that is what refactoring is for (so you can improve the code to deal
with some missed functionality) and why everyone is responsible for all the code
(collective ownership). If you have missed something out, then at some point
someone should notice this and come back and add a new test. If the code now
fails that test, then it should be “improved” such that it passes the test. This is a
normal XP practise and should not elicit any response such as “I found a bug in
your code AGAIN!!” If it does then it indicates that there is a problem within the
XP team far more than that there was a problem with your work.

6.4 Making Pair Programming Work

The idea behind pair programming is of course very simple, essentially it comes
done to “two heads are better than one” most of the time. In addition, in pair
programming all code is always reviewed by at least one other person who is
focussed on what the code needs to do.

Okay, but how does it work in practise? How do you get two developers to
pair program, particularly when most programmers like to work on their own,
have often been trained primarily to work on their own, indeed where some
programmers seem sometimes to be incapable of relating to other human beings,
let alone working in a pair!

Okay let us be honest here – pair programming isn’t easy, actually its quite
hard. This is not what you often hear, but it is a fact! Most programmers have
been trained to work alone, to change the habit of a lifetime is never easy. In
addition, few people can just pair program straight off, most need to learn (or be
trained) how to pair program.

Knowing how to work in pairs is hard because it is not only a different way of
working, it involves inter-personal skills, pair dynamics, communication, toler-
ance and trust.

For example, when people think of pair programming, they think of two people
working on the same code. Fine, but it is not possible for two people to actually pro-
gram at the same time. In pair programming, one developer takes hands on control
of the keyboard and mouse, while the other monitors what the “driver” is doing
(often referred to as the “navigator”). This requires active participation from both
sides. But this is not how most programmers have been trained to work. Most pro-
grammers expect to be the “driver,” they are not attuned to being the “navigator.”

Being the driver is what programmers traditionally have been. In pair pro-
gramming situations, many programmers will initially fall straight into this role.
However, they must communicate with their navigator (not necessarily an easy ex-
ercise). In turn, the navigator should participate in the development by considering

110 Agile Software Construction

what the driver is doing, how they might test it, what other options there might
be, etc.

However, it is all too easy for the navigator to just sit back and enjoy the ride.
Note that this is not pair programming! Taking the analogy of the driver and the
navigator for a moment. Consider what would happen if the pair were actually in
a car on the M25 (the orbital motorway around London). The driver is focussed
on manoeuvring through the throng of traffic, road works, traffic cones, speed
restrictions, and police speed cameras, etc. that are typical of the M25. If the
navigator sits back and “enjoys the ride,” then the driver might miss the turn for
the M4. They would then carry on round towards the M42 or M1. At some point,
the driver might realise his mistake and at worst be completely lost and at best
need to take a major detour to get back on his route. Having a programming
partner who is just along for the ride is a bit like this. Both developers must be
engaged in the effort if it is to succeed.

Whilst there are no hard and fast rules to how to do this, there are things that
can help:

1. Engage in a dialogue. The “driver” should try and explain what they are doing.
The “navigator” should ask questions in order to understand what is being
done. This is not as simple as it sounds. For example, the next time you are in
your car and driving, try telling an imaginary passenger what you are doing,
what you are considering and what concerns you have about the road ahead
(it helps if the passenger is imaginary so that none of your friends think you
are mad!).

2. Listen to each other. If one member of the pair is doing all the talking then it
is probably isn’t working. The one who isn’t saying much might not be clear
on what is being done. Try swapping roles, or have a break, or take time out
to review where you are.

3. Take frequent breaks. Pair programming is intensive. It is intensive in terms of
the little grey cells and also in terms of inter-personal communications and
dynamics. Have regular breaks, talk about other things, see how others are
getting on, catch up on the news, etc. Don’t take a break and discuss the code!

4. Don’t be a back seat driver. Nothing can be quiet as annoying as a back seat
driver (particularly if its your mother in law!). One of the common problems,
particular if the “navigator” is more experienced relative to the current task
than the “driver” is the back seat driver syndrome. If you are the navigator
and you find yourself telling the driver what to do all the time try and stop
yourself. It is not only really annoying but it is not pair programming. You are
not performing the role of the navigator. You are acting as the virtual driver
and using someone else’s fingers to type the code in! You can either swap roles,
or better stop and discuss your proposed solution with the driver and then let
them run with it. They will learn a lot more.

5. Make pair programming practical. Providing enough space to allow a pair to
work together comfortably isn’t essential but it can help. This may only go as
far as having desks that are big enough for two developers to sit next to each
other, or it may involve special double size workstation environments.

6 · Putting XP into Practise 111

6. Use a common environment. Developers tend to have their own personal
favourite development environment. For Java this might be JCreator, JBuilder,
NetBeans, Eclipse or even Emacs, etc. However, having different development
environments makes pair programming harder. Selecting one development
environment to be used by all makes life a lot easier. However, developers are
notoriously difficult to get to change environments (partly because they have
invested time and effort in learning the tools they use to the extent where the
tool does not interrupt their thought processes). Selecting a single environ-
ment and enforcing this can therefore cause friction and so must be handled
with care (for example, by proposing an initial tool selection process before
the project starts and getting developers to work with different tools, etc.).

7. Shared language and vocabulary. Developers who have a shared vocabulary of
design and programming concepts tend to work together better. This is partly
because it avoids the “what do you mean by Factory Method?” type question.
This is not as easy as it may seem. As an analogy, consider the following
question that I was once asked when buying some fast food while visiting the
USA:

“Would you like that on a biscuit?”

To me this was somewhat surprising as what I pictured at this point was what I
would call a Digestive biscuit. Which is a type of edible item I would normally
“dunk” in my coffee. It turned out that what I was being offered was some-
thing I thought of as a scone, and when I explained my confusion to the person
serving, I had to describe a Digestive as being a bit like a very thin cookie.

Thus, having the same vocabulary means understanding what each other is
saying as well as having the same terminology. This also helps to build trust and
confidence in each other. Having a shared understanding of the domain and
application specific terms helps. Equally (and possibly more importantly)
having a shared understanding of technical vocabulary is invaluable. One
very good starting point for this is the so-called Gang of Four1 Patterns book
(Gamma et al., 1995). These patterns have been translated into Java (and
extended upon) in Grand (1999, 2001, 2002). Two further patterns books are
Buschmann et al. (1996) (which represents the progression and evolution of
the pattern approach into a system capable of describing and documenting
large scale applications) and Fowler (1997) which considers how patterns can
be used for analysis to help build reusable object models. Others books worth
of consideration include Larman (2001), and Metsker (2002). In addition to
the papers mentioned earlier in this book, there is also a web page dedicated
to the patterns movement (which includes many of the papers referenced as
well as tutorials and example patterns).

8. Allowing non-pair time. There are some situations where allowing a pair to
work alone can be beneficial. This may be a little controversial for some in the
XP community, as they will argue that it is always between to work in pairs.
However, in the following situations, flying solo may be an alternative (but it
should be the rare exception to pair programming):

1The Gang of Four are Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides.

112 Agile Software Construction

a. Exploring completing alternative solutions,
b. Following multiple competing lines of investigation during debugging (but

not bug fixing).
9. Change partners often. Pairs should not be permanent. Instead, pairs should

change as and when required. The typical point at which to change is at the
start of a new task. However, if a task ranges over a number of areas, then a
“driver” developer may pair with several “navigators” in order to benefit from
their different areas of expertise.

Pair programming takes practise. Ideally, in any pair, one of the pair should be
an experienced pair programmer. In many situations, this is not possible, so the
above points should be borne in mind by all members of an XP team. The key
thing is to stick with it.

The typical pair programming workflow is illustrated in Figure 6.10. It illus-
trates a number of important features of pair programming. Firstly, pairs are not

Start Task

Pair up

Stand-Up meeting
to discuss task

Define test and code it

Code business classes
for test

Run test

Task complete?

Integrate

Pair breaks up

no

yes

tests fail

test fail

test passes

Fig. 6.10 Pair-programming workflow.

6 · Putting XP into Practise 113

permanent (and indeed should be changed regularly). A pair forms to carry out a
particular task. At the start of the task, they have a brief meeting to discuss what
it is they are about to do and how they might approach it, what the options are,
etc. This helps to ensure that no one is along just for the ride. They then work on
the code in a test first manner, proposing a test, implementing the business classes
that will meet the requirements of that test and then running the test. If the test
is passed, then they move onto the next test. If the test fails, then they review the
code and determine what is wrong. Once the tests are completed, they integrate
the code with the current build. If this causes any tests for the whole system to fail,
they must revise the code and determine why the test failed, etc. They can only
finish integrating once all the tests have passed. The task is then completed and
the pair breaks up.

In some cases, developers really object to pair programming. They then need
to be educated in the benefits of pair programming and helped to fit into the
pair-programming framework. If they cannot adapt then it is likely that they will
have a bright future on a non-XP project elsewhere.

6.5 Refactoring

It would be possible to dedicate a whole book on refactoring code (and indeed
people have, an excellent text on refactoring is Fowler (1999)). Here, I will try
merely to give some guidance on the when, how and when not of refactoring.

6.5.1 The Very Idea

In many ways, refactoring is an obvious idea but one that is hard to put into
practise. To some extent this can be due to the old maxim “if it ain’t broke, don’t
fix it.” That is, if the code is working at the moment then you don’t need to change
it. This can be particularly true if management do not see the benefit in refactoring
and believe that code that is already written and working should be left as it is and
that to do otherwise is a waste of time, effort and money. They presume that you
have done it once, so why re-do it. When faced with this approach, many developers
will merely opt for the path of least resistance (partly due to management pressure
and partly due to their own fear of breaking something that is working). One of the
first things that needs to happen for refactoring to be effective is for management
to show that they understand the benefits in refactoring (and indeed in the case
of XP, its intrinsic part in the development process).

Actually, the old maxim “if it ain’t broke, don’t fix it” still applies to refactoring
within an XP project. That is, if code isn’t broken in some way then you shouldn’t
refactor it. Thus, you don’t refactor just for the sake of it, you refactor with a
purpose. For example, if the code you are examining does not comply with XP
practises, then it is broken relative to the XP goals and should be refactored.

An interesting way to look at it is that there are three stages to any software
development effort, these are:

114 Agile Software Construction

1. making the software work,
2. making the software right,
3. making the software efficient.

That is, the first aim of the programmer is to make the software work correctly.
In many cases, that’s where the process ends, but not in XP. Although, this may
be the initial emphasis (particularly given the use of test first coding), later on
you may find that the subsequent tasks introduce, for example, duplication into
the code. This is when you make it right. It is at this point that refactoring first
enters the frame. You now need to alter existing code to remove the duplication,
but leave the behaviour unaltered. The third stage follows the idea that you should
first make your software work, and then you can tidy it up so that it is as clear and
as simple as possible. You are then in a position to make it efficient. By clarifying
your code in stage 2, you should be in a better position to make it efficient. Such
optimisation is a form of “improving” the software and is therefore a type of
refactoring. Remember an optimisation might improve the performance of the
system but should not affect its behaviour (this is exactly what refactoring is about).

6.5.2 When to Refactor?

In general, there are two situations when you should consider refactoring code.
These are:

1. Before you implement new code.
2. After you implement new code.

These two situations are important points in the development of the system.
At the first point, you are considering how to implement a new feature in the
system. You are therefore considering the existing system with respect to this
new, previously unimplemented requirement. The existing code should not have
taken this requirement into consideration when it was being implemented (as this
would have broken the rules of XP). Thus, this is a good opportunity to consider
the existing code and review whether it can be improved upon (for example, by
simplifying it). In doing so, even if you do not actually do the refactoring, you will
gain valuable insight into the code that will help when you implement the new
requirement. Of course, if you do any refactoring, then you should make sure that
the system still passes all its tests before you actually start working on the new
requirement.

The second point at which you should consider refactoring is once you have
implemented the new code. This gives you a better opportunity to consider how
your new (and now working) code and the existing code base fit together. For
example, at this point you may notice that two similar classes have essentially
duplicate code. You may be able to eradicate this duplication either by using a
pluggable component or by creating a common abstract class and moving the
duplicate code into that abstract class.

6 · Putting XP into Practise 115

Personally, I find that the most common points at which I find I need to refactor
are:

1. when I examine existing code to understand how it works (for example, to
work out how to add a new feature),

2. after implementing a new feature and examining related code new similarities
or relationships suddenly become apparent.

Note that the above is as true for bug fixes as it is for implementing a completely
new feature.

6.5.3 How to Refactor?

How you should go about refactoring is a large topic (which is covered in detail
by Fowler (1999)). However, the general issues to consider when you start to
refactor are:

1. Make sure that the code you want to refactor has a complete test suite available
for it.

2. Make sure you know how to improve the code.
3. Make sure what you have done has improved the code.
4. Make sure all tests are still passed, plus any new ones you have identified have

also passed.
5. Make use of tool support wherever possible.

Of these, the two most important points are:

1. know what you are doing,
2. and test, test, test.

What do these mean? Firstly, if you find some code that you believe requires
refactoring, then you should make sure you are clear about what your refactoring
will be. For example, just because an algorithm looks complex and convoluted
does not mean that re-writing it will improve on it. You may well end up with
an algorithm that is equally as complex and convoluted, just different. This has
not necessarily improved the code! Secondly, when refactoring, testing should be
your constant companion. If you make a change, then test it immediately. It is
only through testing that you can have any confidence to refactor.

6.5.4 When Not to Refactor?

When should you not refactor? Well an implication of our earlier discussion means
that you shouldn’t refactor when:

“You haven’t got a clear plan of how you will improve the code.”

116 Agile Software Construction

This is because, if you don’t know how to improve it, then you are unlikely to
succeed in improving the code!

Another situation where you don’t want to refactor is within bug fixing. You may
refactor before or after fixing a bug, but bug fixing itself is not part of refactoring.
Thus, you should only refactor correctly functioning code.

Finally, you don’t want to refactor just for the sake of it. There has to be a reason
to refactor. There are those who will say that you can never refactor too much. But
few projects have the luxury of unlimited time and/or resources. And remember,
at the end of the day, the aim is to produce working software that is of value to the
user. Refactoring code may help with this aim, but refactoring for refactorings’
own sake does not.

6.6 Keeping on Track

6.6.1 Small Releases

It can come as a surprise, but keeping releases small can actually be a difficult
challenge. This can be because organisations are used to larger releases and try
to focus on these, customers expect fully functional releases and so want larger
releases or because the practicalities of releasing software to an end user may make
it difficult to do regularly.

On one recent project I led, we could not make many small releases to the actual
end users, because they were working with an earlier version of the software in
the “real” world. They were not particularly computer literate and would require
training on any new features. There were over 250 users so doing this at very
regular intervals was not an option. Instead, representatives from regional user
groups throughout the UK were selected from regular release meetings. At each
meeting, they were given the new release and the new features in the release were
worked through. These sample users would then use the new release for a period
of time to allow a range of users to provide representative feedback. This feedback
would then be used to guide following releases. This allowed regular monthly
releases to be created without interrupting the actual work being done by the
majority of users.

6.6.2 Simple Design

So XP states that you should keep your designs as simple as possible, but still
implement the functionality required. Well that’s easy then! Well actually no,
creating simple design is not easy! For a start what is “Simple Design.” Is it a basic
design? and when can you say that a design is simple? As before there are no hard
and fast rules, but the simplest design, that does what you need it to do, is one
which:

1. Runs all the tests cases. If it doesn’t it is not yet complete.
2. Contains no duplicate code.

6 · Putting XP into Practise 117

3. Makes it clear to another programmer, what the original programmers in-
tended the code to mean. This is a very important point and one that often
mitigates against naı̈ve, obscure or basic designs.

4. Contains the fewest possible classes and methods.
5. Doesn’t include any unused features.

This doesn’t mean that all designs implemented are small and trivial. If the
problem being addressed is a complex one, then the design to solve that problem
may well be complex relative to other parts of the system. However, our aim should
still be to produce the simplest design possible, that implements the required
functionality, passes all the tests and is as clear as possible to someone reading the
code. To me this last point, clarity in the code, is very important. Many times over
the years, I have chosen a solution which I believe to be clearer to someone reading
the code compared to another solution which may use less code or initially appear
in some way better. My argument is always the same, if it is clearer to me now, it
is likely to be clearer to someone else later on (when I may not be around).

Even given the above guidance, finding a simple design can be hard and may
not be achieved on the first attempt. This is where brainstorming on a white board
with other developers can be invaluable for refining and simplifying something
that at first seems to be incredibly complex. More than once I have been in such
meetings, outlining my plan of attack for some feature, and someone else in
the room, possibly with less experience or less familiar with the issues will say
something like “I may be missing something here, but why don’t you” At
which point, I usually stare at the white board, try to find a reason to counter
what now seems to be “blindingly obvious” and typically fail. The end result is
that I have been able to produce a simpler implementation and my colleague has
felt good about the help they have given.

So what else can we do to try to help ourselves find the “simplest” design? Here
are some other nuggets that have been found useful:

1. Be driven by the tests. This helps to focus on what is actually required and not
on what you think may be required.

2. Although experience is invaluable, try to apply it sparingly. I mean by this,
that just because you have seen a similar problem before, does not mean that
the solution you identified last time should be used wholesale in the new
application. Rather, it should allow you to gain insight into the problem, and
thus to determine what the best current solution should be.

3. Start with simplifying assumptions. This makes things easier to understand
initially.

4. As your understanding grows, retract one simplifying assumption at a time
and refine your design.

5. Consider what is missing from your simple solution (relative to any new tests
identified) and plan the simplest way to introduce it that maintains the clarity
of the solution.

6. Involve your programming partner – don’t take them along for the ride.
7. Use your head. Ask yourself, “is this the simplest, clearest, most obvious way

to do this.” For example, soon after starting with Java, I noticed it didn’t have

118 Agile Software Construction

a case statement that could support testing on objects. Initially, I started to use
a map object to mimic a “case” statements behaviour. In time it became clear
that although the end result looked quite clever (and indeed I felt quite smug
at the invention) the resulting code was far less clear that it should have been.
I have since resorted to multiple “if” statements that are much clearer to read.

8. Use refactoring to refine the design as the project progresses (this is part of
the purpose of refactoring).

Another thing that can help your design is not to forget some basic object oriented
design guidelines. Such as:

Naming Classes. The naming of a class is extremely important. The class is the
core element in any object-oriented program and its name has huge semantic
meaning that can greatly affect the clarity of the program. Examples of Java
system classes include:

HashTable
FileInputStream
SecurityManager

The above names are good examples of how a name can describe a class. The
name of a class is used by most developers to indicate its purpose or intent.
This is partly due to the fact that it is the class name that is used when searching
for appropriate classes (for example, by using the documentation generated by
Javadoc).

You should, therefore, use descriptive class names; classes with names such
as MyClass or ProjectClass1 are of little use. However, class names should not be
so specific that they make it appear that the class is unlikely to be of use except
in one specific situation (unless, of course this is the case). For example, in an
application that records details about university lecturers, a class with a name
such as ComputerScienceDepartmentLecturer is probably not appropriate, unless
it really does relate only to lecturers in the Computer Science Department. If
this is the case, you need to ask yourself in what way computer science lecturers
are different from other lecturers.

The role of a class. A subclass or class should accomplish one specific purpose; that
is, it should capture only one idea. If more than one idea is encapsulated in a
class, you should break the class down into its constituent parts. This guideline
leads to small classes (in terms of methods, instance variables and code). Break-
ing a class down, costs little but may produce major gains in reusability and
flexibility.

A subclass should only be used to modify the behaviour of its parent class. This
modification should be a refinement of the class and should therefore extend
the behaviour of the class in some way. For example, a subclass may redefine
one or more of the methods, add methods that use the inherited behaviour, or
add class or instance variables. Therefore, a subclass which does not do at least
one of these is inappropriate.

Creating new data structure classes. When working with data structures, there is
always the question of whether to create a new data structure class to hold your

6 · Putting XP into Practise 119

data or whether to define a class which holds the data within one of its instance
variables and then provide methods which access that variable.

For example, let us assume that we wish to define a new class, called Account,
which holds information on deposits and withdrawals. We believe that we
should use a hash table to hold the actual data, but should Account be a subclass
of HashTable or of something else (for example, Object, with an instance variable
holding an instance of HashTable)? Of course, it depends on what you are going
to do with the Accountclass. If it provides a new data structure class (in some
way), even if it is only for your application, then you should consider making it
a subclass of HashTable. However, if you need to provide a functionally complex
class that just happens to contain a hash table, then it is almost certainly better
to make it a subclass of Object.

There is another point to consider: if Accountis a subclass of HashTable,
then any instance of Account responds to the whole of the HashTable protocol.
You should ask yourself whether this is what you want, or whether a more
limited protocol (one appropriate to an account object) is more suitable.

Class comments. Every class, whether abstract or concrete, should have a class
comment. This comment is the basic documentation for the class. It should,
therefore, tell a developer creating a subclass from the class, or a user of the
class, what they need to know.

Using a class or an instance. In situations where only a single instance of a class is
required, it is better style to define a class which is instantiated once, than to
provide the required behaviour in class-side methods. Using a class instead of
an instance is very poor style, breaks the rules of object orientation and may
have implications for the future maintenance of the system.

6.6.3 Continuous Integration

The aim when trying to implement “continuous integration” it not to integrate
every 5 min, but between one and several times per day. The aim is to avoid the
problems encountered with big bang integrations. Big bang integrations happen
when a period of time (typically days or weeks rather than hours) has elapsed. In
many situations, the act of integrating all the code can take days in itself. In one
project that I witnessed, the integration took a week just to get to the point that all
the code compiled (it had yet to be tested!). One developer in particular seemed
to have gone off on their own causing chaos.

Big bang integrations slow development projects down and can help to create
a culture of blame. The reason for regular integration (every few hours) is to help
you find out:

1. Have you broken anything?
2. Has anyone broken anything you have done with his or her changes?

To “implement” continuous integration you need to try and adopt a development
model where you code for a while, and then integrate before continuing coding.
This may be as frequently as every hour or may be a couple of times a day. If you go
for too long without integrating you may be storing up problems for yourself. If

120 Agile Software Construction

you find that others have been integrating and you haven’t, then you should try to
integrate as you may be storing up problems when you come to try and integrate
your own code. By regularly integrating your code with the current build, you
should also have everyone else’s latest code (give or take an hour or two).

How can this work? Certainly in the past, there was the idea what developers
should only integrate their code into the current build, once the task they were
working was completed, fully tested and possibly reviewed and signed off.

The key to continuous integration is that pair programmers should work in
small steps and that these small steps can be integrated. Remember the way in
which pair programmers should work:

1. Write a test.
2. Write the code stubs.
3. Make sure everything compiles so far.
4. Run the test – it should fail. That’s okay.
5. Implement stubs.
6. Make sure the test is passed before continuing.
7. Make sure all tests can pass before continuing further.
8. Integrate the now working code into the current build.
9. Return to step 1 until complete.

Thus, each step taken is a relatively small one (defined by a single test case). Any
one task may involve many such tests but you address one test at a time. You
implement just enough behaviour to pass the test and then integrate the result
once everything is shown to be working. Within this framework, continuous
integration becomes part of the way you work, as natural as writing tests for your
code. It is surprising how soon it becomes unthinkable not to integrate your code
regularly in this way.

Note incorrect, incompatible, buggy code should never be integrated into the
current build.

Another aid to make continuous integration happen is to have a specific in-
tegration machine. This machine is used for integrating code into the current
build. The use of a specific integration machine, set up within the project office,
workspace or similar, is that:

1. Everyone can see who is integrating at the moment. The people at the inte-
gration machine are the ones integrating right now.

2. Only one pair can integrate at any one time. This avoids the situation where
two or more pairs are trying to integrate. If this happens, you can find that
one pair start to step on the toes of the other pair as they try to fix problems
introduced by their particular integrations. Another way round this is to
have some form of token that integration builders must possess in order to
integrate. At one point we had a rather strange hat, that some of the developers

6 · Putting XP into Practise 121

liked to ware which was labelled “Build Hat.”2 If you had the build hat you
could integrate your code. If you didn’t have it, then you couldn’t build it.

3. The use of the integration machine makes it clear that integration is a separate,
deliberate step in the development process.

4. The integration machine can be a nice big powerful machine able to run all
the tests quickly and compile all the code, etc.

The actual integration process itself, should follow these basic steps:

1. Retrieve the current build and re-run all the tests. This makes sure that every-
thing is okay before you start. It should be, as the last pair to integrate should
have left the system in a state where all tests are passed. However, life just isn’t
always as simple as that so it is often best to make sure. If not all the tests have
passed then the last pair to integrate needs to fix the problems (and have a bit
of a telling off !).

2. Next the pair should add their new code to the integration build.
3. The pairs are now ready to rebuild the system. In the case of Java, this will

involve “javac-ing” the code and creating one or more Jars, Wars or Ears, etc.
Tools such as ANT can greatly simplify this.

4. Now the pairs are ready to re-run all the tests. If all the tests have been passed,
a new build is released and the rest of the team informed of the successful
build. This allows other developers to update their source code base, obtain
the new build, etc.

5. If one or more tests failed, then the pair must fix the problem before contin-
uing. If the problem is too big to fix quickly on the integration machine, then
they should remove their changes from the build machine and return to their
own area to carry on with resolving the problem.

6.6.4 Making Collective Ownership Happen

Getting programmers to give up personal ownership of code and to take collective
ownership is actually not that difficult to do. Often the problem is steering away
from lack of ownership. The “oh! if its not my code then I am not responsible for
it” attitude. Actually, the attitude is “all the code is my code.”

To make it work, you need a few things to happen. First of all you need devel-
opers to:

1. Let us go of their egos. There should be no prima donnas, no gurus whose
work no one will touch. Everyone is in the same boat, everyone is trying to
do the best they can for the project and most importantly of all everyone,
and I do mean everyone can make a mistake. The sooner everyone realises
these points and stops trying to score points over each other, the quicker
collective ownership can happen. I have personally found one of the best ways
to help this along is to try and be the best proponent of myself. That way, less

2This “hat” was actually the remains of a white cardboard box, cut-out to make a hat!

122 Agile Software Construction

experienced members of the team hopefully follow my example. I do say I
try to do this because I am just as human as anyone else and can sometimes
be too protective as well, but that also shows everyone that nobody is perfect
(well not me anyway!).

2. Let go of the software once it is integrated. It is now the property of the project
and everyone owns it. Therefore, everyone has the right (indeed the duty) to
improve it if they can see how (and have a reason to do so). This can be
tricky, but with pair programming, this means that there are two people who
created it (so its not yours alone anyway) and that there may be another two
refactoring it.

Next you need software support that can make this happen. One of the most
important support tools available to any XP project is a reliable version control
system. Later in this book, we will talk about CVS (Continuous Version control
System others include subversion). This will allow the project to recover from any
unfortunate instances and to examine who made what changes when.

6.6.5 Getting an On-Site Customer

You need to try and get an “on-site customer” as part of your team – to do this try
asking your client for one. They may be very happy to give you one. They may be
surprised by the request as no one may ever have made such a request before, but
they may see that it makes sense. If they don’t then try to educate them, explaining
to them the great benefits that an on-site customer can bring to a project. You can
even point out that you will probably not need them all the time once the project
gets started and thus they can still do some of their normal work, just from a desk
within the project team. Depending on the type of client, they may or may not be
able to do this. If you don’t succeed in getting an on-site customer, then try and
get an “always available” one. This often works just as well. On a recent project, we
were working with a government department in London and our office is based in
Bath over an hour train journey away. As the project was expected to run for some
time, no one from the London office wished to effectively relocate to Bath for any
period of time. Instead, we had an always-available customer using the phone,
email and video conferencing and who was an on-site customer when we really
needed her. Overall, this worked out really well and the project did not suffer in
the slightest.

6.6.6 Stand-Up Meetings

A common practise within an XP project is the stand-up meeting. This is a meeting,
which as its name indicates, is held with everyone standing up. The idea is that the
meeting will be short, everyone will be focussed on the purpose of the meeting, and
no one will be sliding down in his/her seat snoozing quietly and not contributing.
Such meetings might be held at the start of the day to review where everyone is
and to allocate pairs, tasks to pairs, discuss any concerns, etc. A pair may also use
stand-up meetings during a task when they wish to discuss some issue or concern

6 · Putting XP into Practise 123

with other members of the team, etc. Stand-up meeting should be short, concise
and focussed (and this is really the point) with a particular goal. Once the goal is
met, then the meeting should be adjourned.

6.7 Summary

As you can see from this chapter, actually implementing XP is a non-trivial task
and it takes time and practise to get it right. In answer to the question, how best to
introduce XP into a project, the simplest answer is to get an experienced XP expert
in to act as an XP coach and ideally have a couple of experienced XP programmers
who can help to smooth the introduction. As this is often not an option, then you
need to give XP time and to introduce a bit of it at a time, but understand you
will not get the full benefit of XP until you introduce all twelve practises.

7
Agile Modelling and XP

7.1 Introduction

Over the last four chapters, we have considered in detail both Agile Modelling
(AM) and eXtreme Programming (XP). Both are from the agile movement and
both are motivated by the desire to produce better software faster. But how do they
relate (if at all)? What is the relationship between Agile Modelling and XP? Are
they complementary or contradictory? In this Chapter, we will consider exactly
this issue and look at how Agile Modelling can actually enhance an XP project.

7.2 The Fit

In actual fact, many of the Agile Modelling practises fit straight into XP. In many
cases, they are the modelling equivalent of the XP programming-oriented prac-
tises. However, Agile Modelling’s emphasis is obviously modelling and XP’s em-
phasis is programing, so there are differences and there are practises that are only
relevant to one of the methods or the other.

The question therefore is, “Do the Agile Modelling practises add any value to the
XP practises?” Here we mean, “Do they add value in terms of helping to produce
the end product, that is, the software?” If they don’t actually help to produce a
better piece of software or to speed up the process of creating that software, then
they don’t add value.

It is also important to consider whether Agile Modelling actually fits in with the
philosophy of XP at all. At first sight, there may be a fundamental conflict. That is,
XP does not encourage big up-front modelling and Agile Modelling is obviously
about modelling, therefore, they are at odds. Except that, Agile Modelling is more
of a philosophy than a hard and fast approach. Indeed, Agile Modelling needs to
be applied with some other development methodology to be of any real benefit. As
such, it brings a suite of agile techniques to the process of modelling. XP does do
modelling, although this may come as a shock to some alleged XP practitioners.
However, it does not do “big up-front modelling.” Instead, modelling is performed
as and when required during the lifetime of an XP project. It is at these points
that Agile Modelling practises can become not only relevant but also extremely
useful.

125

126 Agile Software Construction

Table 7.1 Common practises between Agile Modelling and eXtreme Programming

Agile Modelling eXtreme Programming

Collective ownership Collective ownership
Create simple content/depict models simply Simple design
Model with others Pair programming
Apply modelling standards Use coding standards
Active stakeholder participation On-site customer

7.3 Common Practises

So both Agile Modelling and XP are part of the agile movement so what practises
do they have in common. Actually, they have quite a few practises in common
(although the names may differ from one approach to the other). To illustrate
this, consider Table 7.1. This table pairs up various Agile Modelling practises with
their equivalent (or near-equivalent) XP practises.

Note that as the emphasis on the two approaches differs, there is bound to be
a slight variation in emphasis within common practises. For example, “Model
with Others” is matched to “Pair Programming” because the intention in both
cases is that everything produced is examined and thought about by two or more
people. Some differences are more obvious; in Agile Modelling we use modelling
standards while in eXtreme Programming we use coding standards but again the
intention is the same.

Other Agile Modelling practises have potentially less obvious parallels within
XP practises. But again if they are examined, it can be seen that they represent the
same or similar intention but from the modelling perspective. These are illustrated
in Table 7.2.

For example, in Table 7.2 when performing Agile Modelling you should con-
sider how what you are modelling might be tested? How you can model to fa-
cilitate testing? (and by implication what those tests are). This can be then fed
into the test-first coding style of XP (this is discussed in more detail later in this
Chapter). In turn, the practise of displaying models publicly (for example, on a
modelling wall) is akin to the open communication promoted by XP. Agile Mod-
elling also encourages modellers to work in “small increments” that is similar
to XP’s practise of defining a single test, implementing what is needed for that
test, before continuing with the next test. Finally, one way of validating models
created in Agile Modelling is to prove those models by implementing them. This
is akin to requiring code to pass an individual test before continuing. It also fits

Table 7.2 Parallel practises between Agile Modelling and eXtreme Programming.

Agile Modelling eXtreme Programming

Consider testability Testing (test-first coding)
Display models publicly Open communication
Model in small increments Implement a test at a time
Prove it with code Pass a test before continuing

7 · Agile Modelling and XP 127

in very well with XP, in that you may model a little bit, then implement it before
continuing with modelling which is a very XP-like approach.

7.4 Modelling Specific Practises

There are some Agile Modelling practises that may, at first at least, appear to have
no place within XP at all. These practises include:

� model with a purpose,
� using multiple models and
� know your models.

This is partly as they are very clearly specific to the act of modelling. It is also
partly because XP does not have much to say about the act of modelling or of
the models that might be created. The only thing that tends to be discussed is
the use of stand-up modelling meetings during which existing code is analysed or
new code explored through the use of diagrams (which are a form of model). The
resulting XP “models” are often thrown away as soon as they are no longer needed
(as they may only exist for a short time on white boards, note pads or index cards
and are never translated into a design tool).

In the remainder of this section, we will look at each of the three practises listed
above and consider whether they actually do have a role within XP.

7.4.1 Model with a Purpose

As many XP practitioners may see no place for modelling at all, this point may, to
them, seem self-defeating. That is, there is no purpose to modelling within an XP
project! However, this can be very wrong. There are a number of purposes to mod-
elling which can be very relevant to XP. For example, the motivational category
within Agile Modelling that includes the practises “Model to Understand” and
“Model to Communicate.” These two practises are considered in more detail below.

Model to understand the software. This is relevant because, before you refactor
or extend your code you must understand it. Individual methods or classes
may be understandable merely by considering them in isolation. However,
due to the nature of object-oriented systems, such as those implemented in
languages such as Java, it is often necessary to consider a group of cooperating
classes together. This may involve reviewing how the instances of the classes
are created, interacted and are discarded. Personally, I found doing this much
easier using diagrams and pictures than by purely examining the source code
(although the diagrams and pictures may be derived from that very source code).
When confronted with a new area of a system, I will usually find it necessary
to produce a structural class diagram and one or more sequence diagrams to
help me understand the code. This may be in a modelling tool or it might
be through the modelling generation capabilities of a tool such as Together

128 Agile Software Construction

Fig. 7.1 Creating a new UML diagram in Eclipse using Omondo.

or Eclipse. For example, when looking at part of the implementation of the
ClearSpell spell checker developed by a colleague, I need to become familiar
with the structure of the main spell-checking engine. To do this, I have decided
to use the Omondo plug-in for Eclipse to generate a class diagram for myself.
This is done within Eclipse by creating a new UML diagram as illustrated in
Figure 7.1. Once this is done, Omondo finds out which classes and interfaces
are in the selected package. It then presents a selection dialog to the user, which
allows them to select which classes and interfaces they actually want to include
in the diagram and what type of relationships to show. This is illustrated in
Figure 7.2.

Having done this, Omondo then creates the class diagram displayed in
Figure 7.3. Although I must still determine what the various elements of this
package now do, I have a much better feel for the structure of this package, then
I would have got just by looking at what the package contains (as illustrated in
Figure 7.4).

Of course, I do not need to use a tool such as Eclipse or Together at all. I
might find that merely drawing out the structure on a white board is more than
sufficient (as illustrated in Figure 7.5).

Model to communicate. Source code is the end result that we all are trying to produce
(it is not a model which will be delivered as an executable after all). However,
it is not the best way to explain your ideas to one or more other people. Within
XP, if a new piece of code is to be implemented, a programmer may call a quick
“stand-up” meeting to run through their ideas with their pair-programming

7 · Agile Modelling and XP 129

Fig. 7.2 Selecting the contents of the class diagram.

partner (and a few other people with relevant knowledge or experience). At such
a meeting, models may well be the best form of communication. Of course,
this does not necessarily imply the use of a modelling tool. It may involve
white boards, post-it notes, index cards, etc. But then, that is exactly what Agile
Modelling encourages you to use (if they are appropriate).

The key to both of these issues: “Model to understand” and “Model to com-
municate,” is the need for a “valid purpose.” Stating that XP does not explicitly
include modelling is not a valid reason for not to do modelling. Even in XP, there
can be “valid reasons” to model!

7.4.2 Multiple Models

If XP is all about programming, then I don’t want to get bogged down in modelling,
let alone end up having to create multiple models! Do I? However, the problem
with this argument is that by only using a single model is a bit like only ever
looking at works of art on a 15′′ black and white monitor or TV – you will fail to
see the whole picture let along understand the many subtleties and textures of the
work being scrutinised.

In just the same way, if you wish to fully understand your application, then you
may well need to consider a class diagram (for the system structure), a sequence

130 Agile Software Construction

Fig. 7.3 The auto-generated class diagram.

Fig. 7.4 Listing the package contents.

7 · Agile Modelling and XP 131

Fig. 7.5 Hand drawn class diagram.

diagram (for its behaviour), a data diagram (for the database representation), etc.
This is still as true for XP as it is for Agile Modelling! You should then switch
between the different models as and when required.

7.4.3 Know Your Models

Whether you are an Agile modeller or an XP developer you need to know the tools
available to you. Even for those working on an XP project, modelling is relevant
(as has already been said). Thus, XP developers need to understand the models
available to them just as much as an Agile modeller should. That is, they should
understand the strengths and weaknesses of different types of models. This will
help them to keep models as simple as possible, as well as helps to apply appropriate
models which will help them to understand the systems under consideration.

7.5 XP Objections to Agile Modelling

Other arguments raised by XP practitioners against Agile Modelling include:

� Modelling is all about big up-front design (the so called BMUF – Big Mod-
elling Up-Front syndrome). Agile Modelling clearly does not promote this.
This is illustrated by the Agile Modelling practises such as “Model in Small
Increments” and “Prove it with Code.”

132 Agile Software Construction

� All models are permanent documents that must be updated when any changes
are made. This is clearly not what Agile Modelling says. For example, the
practises “Discard temporary models,” “Use the simplest tools” and “Update
only when it hurts” contradict this view.

� You need to use a complex modelling tool, such as Rational Rose to carry out
any modelling activity. However, as Agile Modelling explicitly debunks that
myth, stating you should use whatever modelling medium is appropriate,
which may include modelling tools such as Rational Rose, but also white
boards, index cards, post-it notes, etc.

� You need to know, and use, UML to create models. Agile Modelling does say
that you should know how to apply whatever representation you are using in
your models and that UML is one example of this. But it does not mandate
any particular type of representation and indeed Agile modellers know that
something like UML does not cover all the modelling situations you might
want. In addition, an Agile modeller will not worry about creating a precise
and complete UML diagram. Instead, they will focus on the audience of what
they are creating and make sure that it is comprehensible to that audience.

� XP does not encourage modelling. Actually this is wrong. XP does promote the
creation and use of models. The use of index cards for user stories and classes
is a form of modelling. XP practitioners will also often draw diagrams on
white boards while trying to consider how to address a problem of refactor
code, etc. These are again forms of models.

� XP does not create any documentation and models are a form of unnecessary
documentation. XP promotes code as the core form of documentation for a
system as only code is in sync with code. However, documentation needs to be
appropriate for the reader of that documentation. Source code may be a good
source of reference for programmers, but it is unlikely to be appropriate for
end users, non-programmers, support personnel, etc. In some cases, models
may be a very useful form of documentation for some of these audiences. For
example, a UML deployment diagram may be very useful for understanding
how the system will be installed over a network.

7.6 Agile Modelling and Planning XP Projects

In this section, we will consider how and where Agile Modelling fits into the
project-planning aspects of an XP project. An XP project is planned at a number
of levels and at various points during an XP projects lifetime (see Figure 7.6). This
means that Agile Modelling practises may be more or less relevant at different
stages during this process. In the following, we will consider the planning process
and where Agile Modelling can be exploited to the benefit of XP.

7.6.1 Initial Project Planning

There are two primary steps within the initial project-planning phase; these are
the initial planning game and the elaboration process.

7 · Agile Modelling and XP 133

Initial User
Stories

Initial Planning
Game

Elaboration
Process

Overall
Plan

System
Metaphor

Detailed
User

Stories

Release Planning
Game

Elaboration
Process

Release
Plan

Iteration
Planning

Iteration
Plan

Iteration

Initial Project Planning

Iteration / Release planning

Implementation

Fig. 7.6 The planning aspects of an XP project lifecycle.

Initial planning game. During this process, business and development may resort
to modelling to help them clarify the user stories. By applying Agile Modelling
practises, this modelling can be controlled and focused. An example of where
they might do this is when a User Interface mock up might be created, with
some simple flow charts to prototype system behaviour as a way of elaborating a
user story. For example, Figure 7.7 illustrates a possible user interface design for
a membership web site. This is a diagram drawn on a white board to consider
what fields are needed and what will happen when a user selects the submit
option. The flow diagram presented in Figure 7.8 expresses what happens when
the submit button is pressed. Again, this is a diagram drawn on a white board.
The eventual application will be implemented as a Java 2 Enterprise Edition-
based web application and is presented in Figure 7.9.

Elaboration process. During the elaboration process, various models may be created
to help the developers understand what will be required of the system. This will
help to produce better estimates, etc. Again Agile Modelling practises can be of
great help here.

7.6.2 Iteration/Release Planning

During the iteration/release planning stages, modelling is again important.

Release planning game. As with the initial planning game, Agile Modelling practises
can help focus the modelling activities used to clarify user requirements.

Elaboration process. Although this is typically a shorter process than for the ini-
tial project planning phase, some modelling often still takes place and Agile
Modelling can be applied to ensure that modelling does not become a burden.

134 Agile Software Construction

Fig. 7.7 User interface design.

Iteration planning. In order to break down user stories into tasks, it may be neces-
sary to model how the user stories might be implemented. This might involve
initial class structures, behaviour, etc. This can allow tasks to be identified, clar-
ified or split up. Note that this is not large up-front design, as the models may
be discarded and may only be intended to help elaborate the tasks.

7.7 XP Implementation Phase

This is where the code actually gets written within an XP project. There are
therefore various points at which a model may be relevant and therefore Agile
Modelling practises may be applied. For example, in helping to understand code
in order to refactor it, etc. We will now look at how Agile Modelling can comple-
ment several of the implementation-oriented practises of XP. By implementation-
oriented practises, I mean practises such as “Test-first coding,” and “Refactoring,”
rather than the more process-oriented ones such as, “The Planning Game” or the
“40 hour week rule.”

The practises to be looked at in this section are:

� refactoring,
� test-first coding,

7 · Agile Modelling and XP 135

Fig. 7.8 Basic member creation workflow.

� simple design and
� pair programming.

Each of these will be discussed in more detail below.

7.7.1 Refactoring

Refactoring is primarily a code improvement technique, so is it compatible with
a modelling activity? Is modelling and Agile Modelling in particular, relevant to
refactoring? The answer of course is “yes,” as we have already indicated earlier in
this chapter. In the last chapter, some of the issues to consider when refactoring
were given as:

� Make sure you know how to improve the code.
� Make sure what you have done has improved the code.

That is, “know what you are doing!” It was also stressed that you should not
refactor:

“When you haven’t got a clear plan of how you will improve the code.”

136 Agile Software Construction

Fig. 7.9 The membership web site implementation.

Agile Modelling can be used to help with all three issues. By modelling various
aspects of the system, you may gain a better understanding of what it does. By
modifying the model, you can evaluate how you might refactor it and whether it
appears to have benefited from the refactoring. This is a lot cheaper than actually
coding the changes and then considering the results. It may also be a better medium

7 · Agile Modelling and XP 137

through which to convey your ideas to your pair-programming partner or to
others; thus allowing improved communication of ideas.

If the project you are working has moved to XP since its inception, there may
also already be system models available. When you refactor, you may need to
think about updating these models as well. By applying Agile Modelling practises,
you can determine if they do actually need to be revised or not. For example, by
considering the following two Agile Modelling practises:

� Update only when it hurts not to do so.
� Discard temporary models.

You might decide not to update the existing models until absolutely necessary.
Even then, I find it better to wait until someone shouts for the models and update
them at that point (in Just-In-Time fashion) as an XP project may refactor the
code several times before the point at which someone wants to reference the
documentation. This would lead to unnecessary model revisions taking place.

Finally, tools that provide “in sync” modelling can really help Agile Modelling
during refactoring (such as the Eclipse tool with the Omondo plug-in as was
seen earlier in this chapter). Using such tools minimises the extra work required
to produce the models but maximises the benefits from having the models. For
example, the models can be created at the click of a few buttons (including se-
quence diagram style models) and any changes subsequently made to the source
code are immediately reflected in the models. Personally, I certainly find that I
refactor structurally using models, behaviourally across objects using models and
internally to methods using the course code editor. This helps me because it fits
with the way I think (it also tends to be much quicker to do things this way if
you have tools such as Together and Eclipse). For example, moving a class into a
new package and changing all references to that class to the new package can be
as simple as dragging and dropping the class into a new package!

7.7.2 Test-First Coding

At first sight, with respect to test-first coding, modelling may seem at best su-
perfluous and at worst contradictory. This is because, in test-first coding, you
essentially follow this cycle:

1. Write a test.
2. Write the code to be tested.
3. Run the test/get the code to work.
4. If the test has passed, then return to step 1 until finished.

So where does Agile Modelling fit into this cycle? It may fit in at a couple of points.
You may have decided to carry out a small amount of modelling at the start of
the current task in order to understand what you need to do. If you have taken
into account the “Design for Testability” Agile Modelling practise, then it may
have helped to identify the tests to be implemented. Another point at which Agile

138 Agile Software Construction

Modelling may be relevant is once a test has been written and you need to consider
how to implement the business code. A short “stand up” design session with your
pair-programming partner can be invaluable. It can help to clarify any number of
issues and help to make sure that they (and you) are engaged in what is being done
and that no one is just along for the ride. This also fits with the Agile Modelling
practise “Prove it with Code.”

Thus, if you modify the test-first coding cycle to the following, then you are
maximising this XP practise, as well as, supporting the Agile Modelling principle
of rapid feedback:

1. Write a test.
2. Model the solution.
3. Implement the solution.
4. Run the test/get the code to work.
5. Discard temporary models.
6. If the test has passed, then return to step 1 until finished.

7.7.3 Simple Design

The XP practise of simple design aims to promote the simplest implementation
that will:

1. Run all the tests.
2. Has no duplicate code.
3. Makes it clear to anyone reading the code what it is meant to do.
4. Have the fewest possible classes and methods.

For many within the XP circles, this pushes against what they think models pro-
mote. It has been thought that “Implement for today, design for tomorrow” means
that you model for tomorrow and that is not what XP is all about. But of course
this is also not what Agile Modelling is about. Indeed, Agile Modelling is about
designing for today and leaving tomorrow to tomorrow.

There are in fact a variety of Agile Modelling practises that also promote sim-
plicity within modelling. These are:

1. Create simple content.
2. Depict models simply.
3. Apply patterns gently.
4. Formalise contract models.

Each of these practises helps promote the simplest designs that meet your needs.
However, they also promote simplicity in the design process. For example, the first
practise essentially exhorts you not to get hung up on representation but focus
on the content and the meaning. In turn, the “Depict Models Simply” practise is
complementary to this, promoting how you present your models.

7 · Agile Modelling and XP 139

One common problem for Java and object-oriented developers in general,
brought up in the late 1990s and after is actually something that was intended to
help in object-oriented design – “Design Patterns.” Don’t get me wrong, I am a
great believer in Design Patterns, they help you re-use proven design knowledge in
new applications, they provide a common design vocabulary and they promote the
whole design process when used effectively and appropriately. However, it is this
last point that is often the problem – “appropriately.” It is not uncommon to apply
design patterns very early on in the design process just because they are a good
technique (and I am just as guilty of doing this as the next designer). However,
in many situations, a design pattern may provide a solution to engineers with
significant flexibility and extendibility that isn’t required yet. XP requires us to go
for the simplest solution that solves the problem today, rather than engineer in
features for tomorrow. In addition, pattern-based solutions may be more complex
than is currently required, may take longer time to develop and may actually make
it harder for others to extend or refactor as they incorporate additional meta
knowledge. The end result is that we do not have the simplest design required for
the job. At this point, you may argue “yes, but once other features are added, it
will be the simplest solution.” The Agile Modelling and XP answer to this is “yes,
but those features may never be added or may never be added in the way you
anticipate.”

For example, in 2003, I was asked to develop a proof of concept resource
management and planning tool for another company that already had a project-
planning tool. The resource management tool was to sit along side the project-
planning tool that was generating a lot of interest from clients. They wished to
see how they could handle both project planning and resource planning within a
single tool. There was however, not enough time (or budget) available to create the
real thing, so a “smoke and mirrors” demonstrator was to be built. The intention
of this tool was that it could be used to illustrate to potential customers what
could be done and if enough clients signed up to the tool it could be created
for real. However, rather than waste what would be done, the idea was that the
demonstrator would evolve and be integrated into the main tool at a later date.
Due to this last “aim,” I decided that I would create the demonstrator in the right
way.

The demonstrator I built made extensive use of design patterns, it applied
the Model—View–Controller pattern (known as the MVC pattern), used the
Factory method and Singleton patterns extensively and the Mediator pattern for
inter-MVC triad communications. Finally, it used an object pool for handling
memory efficiency that would be an issue in the final system. The intention of the
MVC pattern is the separation of the user display, from the control of user input,
from the underlying information model. The Factory method pattern provides
a pattern that describes the use of a factory class for constructing objects. The
Singleton pattern describes a class that can only have one object constructed
for it. The Mediator pattern is one that promotes the loose coupling of a set of
communicating objects. Finally, the object pool pattern manages the reuse of
objects when a type of object is expensive to create or only a limited number
can be created. For more detail on these and other patterns see the Gang of Four
Patterns book (Gamma et al., 1995; Grand, 1999; Hunt, 2003).

140 Agile Software Construction

In the demonstration system, all these patterns were implemented and inte-
grated along with the demonstrator’s own code. Behind the basic user interface
code, the application even made use of XML files to hold data, process this data
and store the results (rather than use the main system). This allowed an XML
editor to be used to configure the data for various client demonstrations (without
the need to hard code anything into that data). This prototype worked very well
and generated a lot of interaction with the clients and the company involved with
many new leads being generated. However, when it came to “integrate” the proto-
type, many of the initial ideas had changed so that the tool would require extensive
re-working. It addition, the main tool had gone through a new release (due in
part to customer feedback) and so the assumptions made about how we would
integrate the tools together no longer held. Finally, the tool vendor company de-
cided to take back the creation of the resource management and planning tool
in-house. The internal developers were not familiar with design patterns. The end
result was that virtually all the prototype code was dumped and the whole lot was
started again! In the end, I wished that I had gone for a simpler implementation
that would have done the job just as well!

In this case, the best thing would have been to apply a design pattern when the
code indicated that it was really needed and not just because I could. This is of
course exactly what Agile Modelling encourages you to do. Thus, it helps you to
produce as simple an implementation as is required to meet the requirements.

The final Agile Modelling practise, we will look at in this section, is the “For-
malise Contract Models” practise. This practise is intended to help the interface
between the project and external technical groups (such as database teams, those
maintaining legacy applications, external service suppliers, etc.). In many (most?)
cases, these groups will not have adopted an agile methodology, and trying to
work in an agile manner with them can be problematic. This is particularly true
for XP projects. Agile Modelling encourages you to define the interface between
such systems and yourselves formally. This makes it easier later on when working
in an XP manner to determine how to use the external groups systems. Producing
the contract model can take time, but can be part of the XP elaboration process
and can be controlled using Agile Modelling practises (to avoid the creation of
excessive documentation and extensive up-front design).

7.7.4 Pair Programming

Pair programming, as we know, involves two developers working together at a
single machine. Within the pair, one developer controls the mouse and keyboard
(the driver) while the other essentially monitors what the first is doing (the nav-
igator). It is essentially that the pair communicates and understands what they
are trying to achieve. It is also important that the navigator understands how the
driver is intended to achieve their goals. There are situations when these goals can
be achieved merely by discussing what is to be done while sitting at the terminal.
However, from experience, I have found that it is generally far better to engage
in a modelling session to help analyse the current software, consider alternative
solutions and review how we should proceed. In the last chapter, we presented a

7 · Agile Modelling and XP 141

Start Task

Pair up

Stand-Up meeting
to discuss task

(modelling used to analyse current implementation /
review alternative approaches / consider tests)

Define test and code it

Code business classes
for test

Run test

Task complete?

Integrate

Pair breaks up

no

yes

tests fail

test fail

test passes

Stand up modelling session
(to review evolving solution /

consider issues)

Fig. 7.10 Pair-programming workflow annotated with modelling steps.

flow chart style diagram outlining the workflow that occurs during pair program-
ming. In this chapter, I have annotated it with the point at which modelling is
relevant within pair programming (Figure 7.10). Using Agile Modelling practises
help ensure that these points are handled in an appropriately agile manner.

7.8 Focus on XP

You may wonder why the focus in this Chapter has been on how Agile Modelling
practises can help an XP project. The reason we have taken in this focus is that at
the end of the day, modelling in any form, is merely an aid to the production of the
software. From an agile perspective, it is the production of the software that is the
central aim. Anything else must either contribute to this goal or is unnecessary.
Therefore, as the primary focus of eXtreme Programming is on the production of
the software used by the end users/clients, Agile Modelling must be an aid to that.
The other way around makes little sense (from an agile perspective). That is, if
you have created wonderful models in an agile manner, you still do not have any

142 Agile Software Construction

software to deliver to the clients. You have not, as yet, added value. Any method
that helps you to create the actual software could do this, but XP is the approach
we have considered from the agile portfolio. Thus, having a programming step is
essential (and therefore not an optional one) whereas modelling may be considered
an optional step from an XP perspective.

There is also a second reason for this focus. From my own perspective, I strongly
believe that whether you are doing XP or another form of agile development, you
will still need to perform some form of modelling at some stage. Applying the
practises defined by Agile Modelling is essential to ensure that the modelling you
do fits in with the agile development process used. This is not less true for XP
than for any other agile method. Indeed, I would go as far as to state that if you
only apply XP and ignore Agile Modelling then you are not being truly agile (on
anything other than very simple projects), because you are not appropriately using
all the agile tools available to you!

8
Agile Modelling and XP Reviewed

8.1 Introduction

In this chapter, we will consider what experiences teams developing with XP and
Agile Modelling methods have had. It considers what issues have been found and
how they have been overcome. It does reach some contentious conclusions about
some aspects of XP and also considers what happens when XP is applied to larger
software projects.

The remainder of this chapter is structured in the following manner. Section
8.2 reviews the twelve XP practices given the current experiences. Section 8.3
considers other factors such as scalability and the use of daily meetings. Section
8.4 addresses the issue of the need for a core software architecture around which
to build the software. Section 8.5 addresses the uses of XP on larger projects, while
Section 8.6 considers where XP tends to be applied most successfully.

8.2 Review of XP/AM Practices

8.2.1 The Planning Game

One of the biggest benefits of the planning game is that it requires a great deal of
interaction between the developers and the customers. It thus helps to breakdown
barriers and open the two sides of the project up to each other. Post-planning
game, people know each other by name, can put a face to that name and are able
to work together more effectively.

It is also typically important to capture performance and quality expectations
at this stage as well as user stories. Not all requirements can easily be expressed
(or at least are best expressed) as user stories.

8.2.2 Small Releases

The definition of a small release turns out to be relative. A small release does allow
for the fastest possible return on investment and for greater customer visibility of
the project and its progress. However, on a large 2-year project, a small release may

143

144 Agile Software Construction

well be after 3 months rather than after 2 weeks. This may still be a very radical step
for an organisation if it normally creates releases every 12 to 24 months. Compared
to 1–2 years, a 3-month delivery cycle is both radical and challenging. However,
on such a project, a 3-month cycle still gives ample opportunity to reduce risk,
respond to changes, to be agile!

8.2.3 Simple Design

Simple design is a lot easier to agree to and to aim for than to achieve. What is
a simple design to one person may not be a simple design to another. On large
projects, what is a simple design may actually be quite complex. However, striving
for the goal of “simple design” is important in the long-run as it helps overall
project velocity. However, interestingly and possibly perversely, it can slowdown
development in the short-term. If a programming pair develop a piece of software
and realise on completion that they could have done a better, and simpler job, a
different way than by following XP principles, they are duty bound to simplify it.
However, they are taking the code that they have just made work and essentially
refactoring it immediately. Thus, in the short-term, they are taking longer time
to complete the task – this can be a difficult practice to embrace whole-heartedly
(both for developers and managers). However, if the design is simplified, then in
the future when this area of the system is returned to it should be easier to evolve!

8.2.4 Testing

Automated testing of the application (using a test framework such as JUnit) can be
one of the most useful features and techniques learned on an XP project. However,
it may result in a blind belief in the automated tests – the “if it passes all the tests
then it is fine” approach.

One problem with these unit tests is that it is exactly what they are – unit tests –
they typically fail to test overall system behaviour. In particular, writing unit tests
for interactive applications (such as a Swing desktop application) are notoriously
difficult. In my own case, I have tended to write unit tests for the business logic
behind the GUI classes but test the GUI classes manually. This is far from ideal,
but without reference to a sophisticated Swing-based testing tool, it is the best I
currently have to offer. However, to help this, the user interface classes are broken
up into the controller, view and model classes such that all the actual operational
behaviour is in the model. However, this still fails to capture what happens when
the user clicks on this option, followed by this button and then Ctrl-S!

Another problem with unit tests is that they are only as good as the people who
write them. The idea in XP is that as the project evolves, if you as a developer notice
a test is missing, then you should add it. The code should then be tested against
the new test and if it fails, corrected. Once it passes the new test, it can be released
by the central repository and a new build created. However, what often happens
is that once a series of tests are created, few new tests are added for existing code.
Developers come to believe that the tests are all there and no new ones needed.

8 · Agile Modelling and XP Reviewed 145

Then at some (far) later stage, a problem is identified which is the result of one or
more missing tests.

Even when a large test suite has been created, problems can arise. As a test
suite grows, changes in the system can result in many of the tests needing to be
modified to deal with the system changes. This can be time consuming to fix
and the problem can be that as a project progresses, the existing unit tests are
abandoned as too much effort to maintain!

XP talks a great deal about Test-first coding. This is an excellent idea, as it
requires the developer to write the test before the code is to be tested. There is
then no bias in the test and the code should only do what is required to pass the
test(s). The end result is independent tests, but it is easier to write the tests after
the code – so the temptation is to do just that! So teams need to be careful to stick
to the test-first coding philosophy.

It is also important not to forget that black box testing (which is what the test
first coding produces) is not the only form of unit testing. It is still useful to carry
out white box testing (that is examine the code to determine all paths through the
code and to ensure that it doesn’t do something it shouldn’t).

Although unit testing is given a very high prominence within XP, it is still neces-
sary to carryout System testing, User testing, “destruction” testing and Acceptance
testing, etc. Indeed, Acceptance tests must be defined upfront at the same time
(or at least just after) the user stories are captured. It is easy for these to slip and
be left until the end. In addition, although in an ideal world the business should
write the acceptance tests, they may need help in formulating them in a way that
is understandable to both the sides.

8.2.5 Refactoring

Experience with XP projects has lead to things being recognized about refactoring,
these are:

1. It is easy to ignore.
2. Refactoring effort is not flat.

We will take each of these points in turn. First, it is easy to ignore refactoring. This
is because refactoring is not about fixing bugs or adding functionality, it is about
improving existing code such that it behaves in exactly the same way as it did, only
its implementation is better. Thus, from an external perspective, the 2 days spent
refactoring those classes has not altered the system in any way at all – it behaves
exactly as it always did. So why refactor it! Of course the reasons for refactoring
have already been given and so will not be reproduced here, but the point is still a
valid one. If I am examining some code (which works and passes all its tests) and
I think I could (probably) improve this – what is the motivation to do so? No one
else in the team is looking at the code with me and even if they are, unless I tell
them I can improve it, who will know (unless they are mind readers they won’t
know). If we add in that I have deadlines of my own to meet on my current task,

146 Agile Software Construction

the delivery date is looming and its 3:30 on Friday – let us not bother refactoring
this code! This is probably not that uncommon a scenario – when you add to this
the value judgement involved in “improving working code” the ease with which
refactoring can be ignored becomes apparent.

Second, the refactoring effort is not flat (Bowers et al., 2002). That is, that
experience suggests that code requires more and more refactoring later in a projects
life cycle than early on. This should not actually be a surprise as we have been
saying that we expect the quality of the code, its functionality and its scope to
evolve as the project progress and that developers should not worry about what
might be done next only what they are doing now. As more and more features are
added to a software system, so the simplifying assumptions of yesterday need more
and more refactoring! However, later on in a projects lifecycle, pressures tends to
be greater than early on, with tighter timescales and more riding on successful
deliveries – which again means that refactoring might be put off. If the tendency
for management to want to keep the changes to the code base to a minimum late
on in a projects development are also applied, later refactoring may effective grind
to a halt! Actually, this may not be a bad thing I know of at least two instances
where late refactoring resulted in significant problems in the software that almost
progressed through to delivery. These problems were invariably related to feature
interactions that the refactoring had helped introduce (or at least made worse).
Interestingly, these problems were not picked up by unit tests due to their cross
system nature. The general feeling was that due to time pressures, the code had
been refactored too quickly and the overall application not retested sufficiently at
the system and user levels.

The key thing on refactoring is that it appears to be very helpful to have someone
coordinating refactoring efforts and monitoring what refactoring is being carried
out. This is particularly true of larger projects where rather than refactoring im-
mediately, refactoring requests may be placed on a whiteboard and coordinated
within the project. For example, late on in an iteration, it may be felt that rather
than refactor now, it would be better to leave some of the refactoring until the
start of the next iteration so that there is less pressure and more time to evaluate
the results of the refactoring.

8.2.6 Pair Programming

This is of course the thing that most people think of when they think of XP. So
how well does it work in practice?

Well, it is certainly a very good way of transferring skills, including but not lim-
ited to XP skills, between experienced and less-experienced developers. In addi-
tion, research has shown that a pair programming team can produce higher quality
code in about half the time as a solo programming (Williams, 2000; Williams et al.,
2000; Williams and Erdogmus, 2002; Williams and Kessler, 2003). So we should
all be pair programming all the time?

Life of course is not always as simple as we would like. Pair programming is a
good example for this. The concept is great, get two people to work on the same
problem. Thereby having two minds producing a solution which should be no

8 · Agile Modelling and XP Reviewed 147

worse and potentially, better than if only one of them had addressed a problem
alone – the old “two heads are better than one” adage. In addition, the idea is that
code is always being reviewed, and is being reviewed by someone who actually is
taking the trouble to think about the problem in hand (rather than making sure
that all coding styles have been adhered too). But, and this is a big BUT, this does
not take into account human dynamics!

In many cases, pair programming is promoted to sceptical management, as
a way of transferring skills from experienced senior software engineers to more
junior developers. And indeed, it can be very effective as a tool for this. However,
it is important that the senior developer work at the pace of the junior developer
so that they can absorb what is being done, and don’t just sit there watching the
cursor fly across the screen in bemused wonder. Of course, all developers will agree
to this, actually making it work is harder, senior developers are not necessarily
natural mentors and little of the experience they have typically gained is aimed at
them acquiring such mentoring skills.

As was stated earlier in this book, developers are not trained to work together.
Indeed, most graduate courses at best encourage separate work (and at worst
actively discourage collaborative work) on the majority of projects (not least as
it makes marking those projects easier!). In addition, many of those attracted to
software development like the fact that they can often focus on a programming
task without the need to communicate with another human. Forcing these people
to work in pairs can be a difficult and problematic process.

This means that the success or otherwise of pair programming often comes
down to the people involved. For example, you need to match personalities as well
as align developers with tasks, based on knowledge and experience. This would
seem to go against what XP tells you. In XP, two developers will pair up to address
a problem. The task owner will select an appropriate pair to work with based
on their knowledge and experience and away they will go. XP also recommends
that pairs be changed regularly to spread the experience and the knowledge. This
is great in theory but often doesn’t work in practice. Some years ago, I worked
in a team in which one particular developer was brilliant but socially inept and
convinced of their own abilities (which were extremely good). However, no one
wanted to work with him, and numerous colleagues forced to work with him asked
to leave his team. He was blissfully unaware of the problems, and the management
were either not skilled enough to deal with him or willing to accept his behaviour
due to the perceived quality of his work (this was not in an XP context mind
you). Such a person would probably have a disastrous affect if thrown into an
XP pair-programming environment without any training or introduction to the
approach. Given the appropriate backup, he might well prosper but not without
some intervention. However, even given his social issues, there were still some
people who found that they could work with him well, so even here there was
potential.

The issue is that there needs to be some form of team leader to coordinate pair
programming teams and to “deal” with any issues that arise. Pair programming
takes time to get right and takes effort to maintain – so it needs a certain level
of management and mentoring itself. All of this is true for larger projects only
doubly so!

148 Agile Software Construction

8.2.7 Collective Ownership

Although it is common to find developers agreeing to the concept of Collective
Ownership, in reality, you will often find that some developers keep a watchful eye
over “their” code. This may not necessarily be because they wish to protect it from
attack by other developers (although this can certainly be a reason), but it may be
because they don’t want any bugs found in their code! This may be due to a lack of
confidence in their own abilities or it may be a misplaced (and long held acceptance
of) blame culture. If developers have worked in an environment in which a culture
of blame has been prevalent and then move to an XP environment, it can be hard
to give up “the old ways.” In some cases, they seem to find it easier to give up
such a culture with reference to others, but not with reference to themselves. For
example, they will be magnanimous if they find a problem in “someone else’s
code” but become very defensive if anyone finds a bug in their code. Although at
first sight, it may seem that they are being kind to other developers, it illustrates
a deep-seated problem that will undermine the collective ownership concept –
they still believe in “my code” and the “code of others.” Why might this be a
problem? because collective ownership is fundamental to the ability to refactor
code, to fix problems when you encounter them to work in an agile manner? In
such situations, it requires a mind shift to move to the new way of thinking (not
just working) and that can take time.

8.2.8 Continuous Integration

Having tools that help to do this can be a great help. For example, tools such as
Eclipse can be integrated with version control systems such as CVS to simplify the
process of submitting code into the central repository.

However, submitting code to the central version control system does not nec-
essarily mean that it forms part of the build immediately. It is necessary to extract
all the current code from the version control system, re-build the application and
run all unit tests. This can be automated using tools such as ANT. This can greatly
simplify the whole process.

Other tools can be used to check for changes in the version control system and to
initiate the build process automatically. An example of such a tool is CruiseControl
available from Source Forge (http://cruisecontrol.sourceforge.net).

However, this approach may not work for larger projects in which it may be
necessary to create regular builds at certain milestones or once certain features
are completed. In such situations, the build process needs to be controlled and is
unlikely to be hourly or even daily.

8.2.9 On-Site Customer

The concept of an on-site customer is extremely important (actually I would
suggest for the success of any software development project). However, it is the
concept of the on-site customer that is important rather than their physical pres-
ence. What I mean by that is that they need to be accessible by the development

8 · Agile Modelling and XP Reviewed 149

team at (almost) any moment to answer questions, clarify issues and generally
provide the detailed application and domain knowledge required. However, they
don’t actually need to be physically located with the team (although if they are,
that’s great but life is often not like that).

If the “on-site” customer is available during normal working hours via a com-
bination of email, phone, possibly video link, etc., then this is often as good. On
numerous occasions, I have sent something to my “on-site” customer by email
and then talked to them by phone to work through whatever was needed. This
is often good enough. On occasions where it is not, then a meeting either “on-
site” or at the customers’ office can usually be quickly arranged. This is certainly
helped by the planning game that helps to create a working relationship between
the “on-site” customer and the team before they move “off-site.”

The key is that the “on-site” customer can (1) answer the questions you may put
to them and (2) deal with any unresolved issues either using their own authority
or quickly by dealing with other members of the business. This tends to mean that
the on-site customer must be senior enough to have the experience of the domain
(and application) required and influential enough to make things happen, but
not too senior so that they are available when you need them!

8.2.10 Coding Standards

Coding standards are essential in my opinion for making it easier for developers
to move between pairs, to work on each other’s code and to understand what is
going on. However, in general, it is the most obvious coding standards that are
the most useful, such as naming conventions, the use of title case and modified
title case in a standard manner, etc. One such convention for “case” use in Java
classes and interfaces is presented in Table 8.1.

Equally, in Java, variable names such as t1,i,j,or temp should rarely be
used. Variable names should be descriptive (semantic variables) or should indicate
the type of object that the variable holds (typed variables).

However, even simple things such as having a spelling convention can make
life easier. If you are from the US, this is not an issue; however, if you are from
the UK or one of the countries that follow the UK form of English, then this is a
major issue. In order to maintain consistency with the core Java classes (and the

Table 8.1 Naming conventions.

Type Convention

Constant class variable containing an object Modified title case
Constant class variable containing a

fundamental type (e.g. int)
Upper case (multiple words

separated by underscores)
Interface names Title case
Class names Title case
Temporary variables Modified title case
Class (static) variables Modified title case
Instance variables Modified title case
Method names Modified title case

150 Agile Software Construction

majority of the world), it is recommended that US spellings are adopted for all
names in your system (including classes, variables and methods). For example:

Color not Colour
Centernot Centre
Editor.initialize() not Editor.initialise()

These sorts of conventions are the things that make life easier. Issues such as
how many characters on a line, how many spaces to leave when starting a nested
statement or event where to place the curly brackets are much less important and
can get in the way of the real issues.

In addition, standards should be applied to models (as have been discussed)
and to how code is reused. Developers should understand the different ways in
which they can, for example, reuse code. For example, as well as pushing reusable
code up the class hierarchy, they can also use Java interfaces to create pluggable
components that work in a simple client–server style. By having conventions
relating to how this is done, developers will be more familiar with the structures
in place when they examine code for the first time.

8.2.11 40-hour Week

Even taking into account that this is really more of a guideline to say you “shouldn’t
work too much all the time” rather than a hard and fast rule, there are some
observations that can be made about this.

First, in organisations where it has been the norm to work long hours for
extended periods of time, it can take a while to overcome that mentality. I know
of one particular organisation that tried to make the 40-hour week the norm and
overcome its previous corporate culture “of long hours.” However, 2 years after
the new policy was instigated, people would still say to someone leaving at 6 pm
(who had been at their desk since 8:30 am) “oh so you are a part timer then” or
“see you are skipping off early.” Obviously, this didn’t help the move to the new
culture (this was actually made worse when a manager was given a monthly award
for working 80 hour weeks)! So moving from the long hours culture to a 40-hour
week culture is hard (for management as well as for the team players).

However, a more worrying trend can be seen (often in larger software projects)
where the 40-hour limit is adhered to during the early parts of the project and/or
iteration. But then, as pressure begins to mount and progress is required, the
number of hours worked increases. This may again seem at odds with an agile
approach as agile philosophy would suggest that the correct thing to do would
be to drop some of the features of the system from the current release (to be
implemented in the next release). First, life is not always that easy as the features
being worked on may be fundamental to provide a working system for the users and
second, there is (in reality) often management and business pressure to produce
certain things in “the next release” whether that is an iteration release or not.
Thus, the pressure mounts to complete the work. Finally, developers often apply
pressure to themselves to complete a task, because they were asked to do so, even
though it ends up taking longer than anyone expected. A few years ago, I had one

8 · Agile Modelling and XP Reviewed 151

developer who started doing exactly that. It only happened two or three times,
but in each case, he did not come to me, I noticed the pattern that was developing
and tried to rein it in. However, this was on a project of just five people and so
was reasonably easy to spot; in a project of 30 it would be much harder.

8.2.12 System Metaphor

The concept of a system metaphor is probably the least used practice within XP.
Invariably, even when XP teams have defined a system metaphor, they have not
really used it. This is in part because the role of the system metaphor is not under-
stood very well and in part (possibly) a reflection on the size of the projects being
undertaken. In larger projects, where a System Metaphor has been used, if that
“metaphor” is examined, it would look a lot more like a traditional software archi-
tecture description than the metaphor concept proposed in XP. For more on the
idea of using an architecture, see the section on architecture later in this chapter.

8.3 Other Factors

8.3.1 Scalability

More than one XP project has been scuppered because scalability problems were
encountered later on. XP promotes dealing with the issues of today and leaving
whatever is required for tomorrow to tomorrow. However, some issues such as
scalability and performance may need earlier consideration. Some XP projects
have found that scalability can be a real headache. For example, one project I
know of worked fine when it supported a single user in iteration 1, however by
six iterations later when it had to support hundreds of users, it could not scale.
The basic architecture had not taken into account the needs of hundreds of users.
This may have been down to poor design, poor coding or lack of thought on the
developers side; however, they were told not to worry about multiple users, as that
wasn’t in the initial iterations!

Personally, I have found that you do need to take into account scalability issues,
performance requirements and, if relevant, multiple process access. That is not to
say that you have to radically change the way you implement the code, but make
sure that you don’t create software that won’t scale if it is assumed that eventually
it should support hundreds of users.

This is really very hard to do, as you are not trying to support hundreds of users
yet, and in fact XP takes the view it may never support hundreds of users. So what
do you do? Your best! If you keep it in mind from the beginning, you may still
have problems but at least you tried. Notably, it is an issue that often dominates
larger software development projects that adopt XP!

8.3.2 Post Project Review

Although this has been mentioned earlier in this book, I am going to re-iterate it
here, as it has been one of the most useful practices I have adopted on numerous

152 Agile Software Construction

projects. That is, the post-iteration/release review. Ideally, the review should in-
volve all project stakeholders including developers, clients, support teams, etc.
This can be carried out within a single meeting, or if you wish to deal with the
non-developers and developers separately, then in two meetings. However, in ei-
ther case, the idea is to conduct a retrospective review of the iteration/project to
pinpoint lessons learned, review processes, see how things can be improved for
the next iteration/release. It is often surprising what surfaces and how this can
make future relations within the project much better.

8.3.3 Environment

The software development environment seems to be quite important to the success
of XP. By environment, I mean the physical environment, rather than a suit of
software tools (although those too can be important). This is not to say that
a “poor” environment will not let an XP project succeed, rather that the right
environment can make it much easier to succeed with XP.

Auer and Miller (2002) propose the concept of “Caves” and “Common” rooms.
This layout has common areas for meetings, discussions, pair programming but
caves for privacy when needed. This acknowledges the need for even XP hardened
pair programmers to get away and have a space to think on their own. This may
be to consider some problem from one particular angle and then to return to
compare solutions with their pair programmer. Or it may have a space to relax
in, check email, view the latest news bulletin on the web, etc. This is actually very
important as pair programming is rather intense and programmers need periods
where they can come up for air and have a breather.

8.3.4 Daily Meeting

If possible (i.e., if the project size isn’t too big), having a daily meeting of everyone
as part of the normal operation of the XP project is extremely beneficial. It really
does promote communication within the team and the sharing of experiences
and knowledge. It also helps ensure that the lines of communication are kept to a
minimum and that team leaders actually know what is happening. Such a meeting
often occurs first thing in the morning before everyone gets going and may be held
as a stand-up meeting to keep it brief (although this is by no means compulsory!).
However, the meeting can happen at any point in the day, on one recent project,
we would hold the meeting just before lunch. The desire to get to lunch ensured
the meeting stayed short, but having it later in the day allowed those working
flexitime to arrive in the office first!

8.4 Architecture

Having an architecture is not a recognized element within an XP project. In-
deed, many will take that having an “Architecture” implies a Big Up Front Design
(BUFD) and that is not what XP is about. Indeed, it is not even what Agile

8 · Agile Modelling and XP Reviewed 153

Modelling is about. However, some experience suggests that XP projects should
only be used where you know what the system architecture is. That is, you should
only build an XP application where you are building the nth application in the
same domain – and thus implicitly know what you need to do where, when and
how.

This is a controversial idea for XP as it is more typically promoted for green-field
applications where the applications requirements are subject to frequent change
or are relatively poorly understood. However, the point is most often made about
larger XP projects, where larger teams are working on longer-lived development
projects. Having an architecture to work within is one way of mitigating the prob-
lems associated with larger XP projects (known as the boundaries and interfaces).

In this section, we will look at why an XP project (if appropriate) might consider
creating an architecture to work within.

8.4.1 Why Have an Architecture

Why have an architecture? This is a very valid and important question, not only
because XP essentially dismisses the idea of having an architecture – the closest it
gets is having a System Metaphor.

Let us consider what role requirements (and in this case user stories) have. They
help identify what the system should do, that is, its functionality. They do not state
anything about how that functionality should be provided. In some cases, non-
functional requirements may also be identified which may impose restrictions on
the realization of the system, but even these say very little about how the system
should be structured or designed.

However, XP takes the requirements of a system (i.e., its required functionality)
and uses them as its sole starting point in producing a design and implementation
of a software system. In some (many) cases, this has been successful and in others
it has not be so successful. I would argue the size of the project and the domain
knowledge of those involved in the development have been the critical issues in
whether the projects have succeeded without an architecture. However, if this is
the first time you have produced a system to these requirements (and the system
is large), it is likely to be fraught with danger.

Consider the equivalent case within the domain of the built environment (i.e.,
buildings). If you were to construct a simple garden shed, you may well start of
by thinking about what you need to do with it. For example, “store the grass
mower,” “store shovels and forks,” “keep dangerous liquids away from children.”
You might then produce a design that exactly matches these requirements. This
end result could be a simple 5 × 6 × 7 foot shed or it could be a smaller 5 ×
4 × 6 foot construction. It could be made out of wood, etc. You might also add
other functional requirements such as “must be high enough to walk into” and
“must have light for germinating plants.” This might direct you towards a higher
shed and one with a window in it. You might well produce a design in your
head with minimal paper work and go along to your local wood merchants and
purchase the required amount of materials. You can then fabricate the shed at your

154 Agile Software Construction

convenience. Such an approach is satisfactory because most of us have witnessed
a garden shed at some time or another and have a reasonable idea of what it
should look like. In addition, the requirements are fairly basic and can easily be
realized.

However, let us now consider constructing a house from just its functions
having never seen a house (merely hearing from someone else what they want it
to do). The list of functions might be:

� Park car securely inside.
� Have a place to cook food and do the clothes washing.
� Be able to sleep inside.
� Have amenities to allow relaxation including music and television.

What might be the end result of providing these functions be? This list of functions
says nothing about the relationships between them. Indeed, some bright aspiring
young designer might note that the car will be inside the house. The car might
reasonably have a stereo. If the car could be upgraded to include a television, well
then this would be the ideal place to provide relaxation. Thus, the “car secure
inside” function and the “relaxation with music and television” could be achieved
together by placing the car in the middle of the house and requiring the users to
sit inside the car!

If you think this example seems a little absurd then have a think about some
of the software systems you or others have “endured” and see if you can make a
connection – I certainly can!

What is required is something that expresses the overall relationship between
the elements that will satisfy the required functions. In the case of a house, it is the
architectural blue prints. These describe where everything should go; they present
different views for different contractors (i.e., those presenting the heating system,
those presenting the wiring, those presenting the physical structure of the walls,
floors and ceilings, etc.). In the case of automobiles, there are equivalent diagrams
(e.g., the wiring harness, the suspension). In fact, in almost every example of
large-scale engineering endeavour, there are architectural blue prints. Software
engineering really is no exception and thus the software architecture represents
the blue prints for the software system.

You might at this point argue that you have built a number of systems without
the need to resort to an architecture. However, ask yourself the question “did I
have an implicit architecture in mind?” Often with simple systems, people have
an architecture that they have adopted sub-conscientiously. They often argue that
it’s the obvious way to structure the system. That may well be so, but it is obvious
either because the system is straightforward or because they have seen similar
systems before. This is really why the shed example was okay – we had a mental
model/architecture of the shed. With the house, as we had never seen a house
before, we had no mental model or architecture to follow.

It should also be fairly clear to you now that if your system is straight forward
(in that you already know how to approach the problem or it is relatively simple),
you may not need to produce an explicit architecture – but that doesn’t mean you
don’t have one – just that it is not being made explicit!

8 · Agile Modelling and XP Reviewed 155

We need an architecture to:

� Understand the system.
� Organize development.
� Promote reuse.
� Promote continued development.

One very useful analogy for the architecture is that the architecture is like a space
station. Within the core element of the space station, all the conduits and connec-
tions have been put in place for future modules to be plugged into. Then, as new
modules for the space station are designed and developed, they can be plugged
into this core and will work safely with the rest of the system. In addition, Java
facilities such as interfaces can be used to provide “air locks.” These act as fire doors
between different parts of the space station, so that if one part of the architecture
(space station) fails or needs to be redesigned, an air lock protects the remainder
of the architecture from being affected. This is illustrated in Figure 8.1.

The architecture provides the context within which the more detailed design
decisions, made for example by pair programmers working on a task, can be
framed. For more information on software architectures, see Bass et al. (1998),
Buschmann et al. (1996), Hofmeister et al. (1999), Kruchten (1995) and Rechtin
and Maier (1997).

Core
functionality

Main architecture

Interface

Fig. 8.1 Conceptualising an architecture.

156 Agile Software Construction

8.4.2 Characteristics of a Good Architecture

It is easier to specify what makes a good architecture than to actually produce
a good architecture, and in many cases, it is not possible to maximise all of the
following. However, we present the guiding characteristics which all software
architects should bear in mind when developing an architecture:

� Resilient. The architecture should be resilient to change. That is, changes in
functionality or additional functionality should have a minimal effect on the
architecture (although they may have a major effect on the design). Thus
subsystems should have clear and specific interfaces. Indeed it is almost true
to say that the very first thing an architect should do is to identify the interfaces
which will be used within the architecture and then identify the subsystems
which will realize the interfaces, etc.

� Simple. The architecture should be simple. Remember as a rule of thumb the
architecture should only be about 10% the size of the overall design and is
supposed to be comprehensible on its own and in its entirety. Avoid making
the architecture complex just for the sake of it.

� Clarity of presentation. As the architecture will be used not only as the base
reference for the remainder of the design but also for future iterations of
the system, it should be easily accessible and devoid of ambiguity (this is a
biggy!) and avoid assuming current project knowledge.

� Clear separation of concerns. The architecture should clearly separate out
different aspects of the system. For example, in the case of the house, the
plumber probably doesn’t want to know about the wiring of the house except
where it might impinge on what they are doing. Therefore, the plumbers plans
should not have a great deal of detail about the wiring harness for the house.

� Balanced distribution of responsibilities. The responsibilities of the subsystems
should be appropriate and balanced. That is, if a subsystem is identified for
dealing with general application security don’t then make it also responsible
for user login. Instead provide a user login subsystem (which may well make
use of the security subsystem).

� Balances economic and technological constraints. The architecture may well
need to justify why one approach was adopted over another – partly to explain
the overall choices to those working within different aspects of the design.
This is important as it may impose restrictions on what elements of the design
can and cannot do (or technologies or solutions they may adopt).

8.4.3 So What is an Architecture?

Let us now go back to the question of what a software architecture actually is. In
essence, it is a number of things, earlier discussions have indicated that it is more
than just a set of diagrams; here, we will consider that in more detail:

� An architecture baseline. The software architecture contains an architectural
baseline that will provide both a proof of concept and the basic skeleton

8 · Agile Modelling and XP Reviewed 157

of the system. This is a “small, skinny” system that captures the essential
functionality of the final system. It is a working prototype that proves the
concepts and the architectural structure. In many ways, it might be considered
to be the results of the iteration 1 release of an XP project. The only real
difference is that its primary aim is to provide the core architecture as well as
the simplest fully functional system possible. So still no big design upfront,
but more of an eye the future than purest XPers might like.

� An architecture description. This is a detailed description of the architec-
ture containing information on the systems, subsystems, classes and inter-
faces that comprise the architecture. It should also contain discussions of
architectural design decisions, constraints, required behaviour, etc. Indeed,
everything that is necessary to understand the architecture. Indeed, the infor-
mation should be sufficient to guide the whole development team through-
out the lifetime of the system. As has already been said, this description may
evolve over time. But what form should this description take, it might be in
the form of descriptions on a whiteboard, diagrams pined up on a model
board or a (lightweight) document. Remember, we still want to travel light,
but with a road map in our pockets!

8.4.4 Architecture Can Make XP Work

We will talk more about architectures in Chapter 9, but it is the role of the archi-
tecture as the road map of the application that helps us to travel light. I have been
involved in a couple of large agile projects; in each case, once we got the basic
architecture in place, the remaining iterations flowed around it. This is not to say
that the architecture did not require modification – it did. We are still trying to
be agile and to travel light, so the architecture does not try to offer everything,
instead it provides a little more of a nod to the future than we might otherwise
provide and it provides the infrastructure for future data communication, organ-
isation of modules, etc. Note that if you are working on an XP project using EJBs,
then you already have an architecture that you are working within, that of the
EJB framework. Thus, the architecture may be imposed by the technology you are
using just as much as from the project itself.

The final thing to remember is that, in an agile project, the architecture does just
enough to stop you falling over yourself and provide the basis of the development
and no more. It should not be a leviathan that takes over the whole project (if it
does you aren’t being agile!).

8.5 XP on Large Projects

Is it possible to apply XP to large-scale project? Certainly, the published mate-
rial on XP implies that you can – although interestingly most of the examples of
XP projects cited in the literature appear to refer to smaller projects of less than
10 developers on projects lasting less than 6 months. What happens if you con-
sider applying XP to larger projects lasting for a couple of years, with dozens of
developers?

158 Agile Software Construction

We have already raised a number of issues relating to larger projects in this chap-
ter. However, there are a number of issues relating specifically to larger projects.
These are discussed below:

1. Pair programming. In large teams, pair programming may or may not always
be necessary, effective or even possible. In large teams, different developers
may not be available due to the varied nature of the tasks being carried out.
In determining whether a task should be pair programmed, it is useful to
consider the experience of the developers involved, the significance of the
feature being implemented and the knowledge required for that feature. This
implies the need to have someone coordinating task allocation and resource
to task allocation. That is, some form of team leader or project manager
who coordinates task and pair assignments. These people can then be held
ultimately accountable for the results of any decisions made (rather than
the developers themselves who may wish to always, or indeed never, pair
program). The team leader can also make sure that pairs do not stick and that
they are changed when appropriate. This sort of management (with a small
“m”) should not be a surprise for a larger project as it is akin to having a
conductor organising an orchestra and is at the heart of what people project
management should (but often isn’t) about.

2. Small releases. A small release may be on that occurs in 4, 6, 8, 12 or more
week cycles. Iterations may be of different sizes ranging from 1, 2, 3 or more
months. The key is that key features are not broken up. That is, an iteration
should not be made artificially small just for the sake of it. If key features of
the iteration will take 2 months to implement (given the current team), then
so be it. The iteration will take 2 months. However, if previous cycles have
been every 1 or 2 years, then this is a major change and greatly increases the
feedback cycle.

3. Reviews and testing. In large projects, with a number of different facets (such as
web interfaces, Java Servlets, JSps and EJBs, and relational databases), formal
code reviews can compliment pair programming. A review involving several
colleagues from different areas of the project can help identify deficiencies
in a body of code that a pair may miss. For example, if a particular database
feature will speed up the search time in a JDBC based application, and the
developers are unaware of it (as it has only recently been introduced), then
a formal review may uncover this if a representative of the database team is
present.

4. Architecture and simple design. XP does not of course promote Big Up Front
Design, but larger projects may greatly benefit from an architectural design
and implementation (possibly as the first iteration). This lets the developers
understand the space within which they are working. It may also help the
team to understand feature interactions that may otherwise be missed – this
is particularly true of larger more complex systems.

5. Refactoring. On larger projects being able to refactor at any time may not
be desirable. In these cases, it is still useful to identify refactoring situa-
tions. These can be listed on a public “refactoring wish list” board. These

8 · Agile Modelling and XP Reviewed 159

refactoring requirements can be considered during the daily meetings, etc.
This thus allows the team leader or project manager to coordinate refactoring
efforts, at appropriate times and gives it the same scrutiny as the main feature
development process.

6. On-site customer. Probably even more important for a large project than for
smaller projects!

8.6 Where XP Works Best

Given all of what has been said above, what can we say about where XP and Agile
Modelling should be applied? There are actually a number of rules of thumb that
can be identified. Note that these are rules of thumb and are not hard and fast
rules. For example, XP can be and has been applied successfully to larger projects.
However, it is more difficult and there is a greater potential for failure, particularly
for those inexperienced in agile approaches.

The rules of thumb that have emerged (and some are quite contentious) include:

1. Smaller projects of typically less than 10 people. The larger the project, the
harder it is to manage as a pure XP project. The XP approach, that is to a large
extent self-organising, becomes difficult with 20 or 30 developers involved. Of
course, the team can be broken down into smaller groups and treated as smaller
XP projects, but then that’s what you have, smaller XP projects interacting.

2. Known domain/applications. For larger projects, XP projects work best where
the domain and the type of application are well understood.

3. Well-established architectures. This point is related to rule 2 in that the reason
that XP works well in well-understood applications is that there is a (possibly)
implicit architecture. The developers know what they should do where, when
and how. If this is not the case, then an architecture needs to be established
within which the XP project can operate.

4. Scalability not an issue. If scalability is an issue, it must be considered early on
in the project so that it does not become an issue later on. This is typically a
problem in larger, longer-lived projects where it is difficult to see the scalability
issues early on. Again, an architecture may help.

8.7 Summary

In this chapter, we have examined what experience has taught us about XP and
Agile Modelling. We have considered how refactoring works in practice, we have
addressed the issue of the need for an architecture within which to frame an XP
project and we have discussed pair programming in practice. This chapter is not
intended to indicate that agile methodologies are not practical. Far from it, instead
it is intended to bring some important perspective to the subject and to make sure
that you are aware of the potential pitfalls associated with these approaches.

160 Agile Software Construction

It is worth noting that we have been careful to talk here of using XP and Agile
Modelling in isolation and have not discussed how they may be incorporated into
other methodologies. This is because applying XP and Agile modelling with other
approaches can overcome some or all of the above issues. Indeed, in the next three
chapters, we will consider exactly these issues.

9
Feature-Driven Development

9.1 Introduction

Planning, managing and monitoring projects that are agile, adaptive and incre-
mental can be very difficult. As was illustrated in the last chapter, although many
of the ideas behind methods such as XP can, and indeed have been very success-
fully applied, it does not mean that it is easy or that they are particularly scalable
(particularly for those new to XP).

So, what do you do if you want to acknowledge that the real world is an uncertain
and changing place. If you want to adopt an agile and adaptive method, but you
don’t want to lose control of the project. That is, you don’t want to sacrifice the
project on the altar of agility!

This is no trivial matter. Adaptive, iterative projects are more complex to con-
trol, and to plan, than more traditional, linear, waterfall models (partly because
they reflect reality but more on this later). In the linear model, life is simpler, no de-
sign starts until all analysis has been completed, in turn no implementation starts
until all the design is finished. Thus, at any one time, it should be very clear what
is being done, by whom and why. In addition, the requirements are fixed back at
the start of the whole project, making things a lot simpler for the poor developer.
Of course, the reality is, that not only may the requirements have been wrong
in the first place or they may have missed some important behaviour, but the
world may change over the 2 years that the system is being implemented and
the end result may be of less use to the end user than they had hoped. But from
the perspective of managing the project, many of the variables have been removed
in a linear project, so it is easier to plan (initially at least, the project may need
re-planning at a later stage when it is realised that creating a persistence layer for
Java takes longer than 2 days – I quote from a project plan I once saw!).

The additional complexity facing the project manager of an agile, adaptive and
incremental project is an inevitable consequence of the acknowledge that the real
world has many variables in it that can change. It is also a consequence of the
parallel nature and dependencies between multiple iterations.

One solution to control the complexity inherent in agile, incremental projects
is to apply a feature-centric process. A feature-centric process is one that tries to
provide a way for management to handle questions such as:

161

162 Agile Software Construction

� What must we do next to add value to the client?
� How are we progressing against time and budgets?
� What issues and risks does the project face?
� How can the issues and risks be addressed or mitigated?
� What should we do next?

Feature-centric processes do this while retaining the motivations behind the agile
movement such as:

1. Individuals and interactions over processes and tools.
2. Working software over comprehensive documentation.
3. Customer collaboration over contract negotiation.
4. Responding to change over following a plan.

With the key aims being:

1. To satisfy the customer.
2. Deliver working software that adds value to the customer.
3. Working software is the primary measure of progress.
4. Promote sustainable development.
5. Keep any process as simple as is reasonably possible.

The term feature-centric refers to development processes that attempt to focus on
combining the units of requirements, with the units of planning and the units of
work. This allows:

� the things users want,
� to be planned for and monitored,
� and to be used as the basis of work allocation.

Feature-driven development (FDD) is an example of a feature-centric process
which we will look at in more detail in this chapter. However, FDD is not the only
feature-centric process available. The development process EVO is feature-centric
(Glib 1997, 2002) as to some extent is DSDM, with its requirements catalogue
(Stapleton, 1997).

In the remainder of this chapter, we first consider the incremental software
development process as a whole and contrast it with the more traditional waterfall
model. We then explain the need for a feature-centric approach in order to control
the planning and management processes within an iterative approach (this is
necessary as such an approach can increase the complexity of the management
process). Following this, we explain the benefit in defining a timebox for each
iteration so that their duration is known (even if their content is not). The section
is completed by a discussion on planning an iterative project and planning each
iteration.

9 · Feature-Driven Development 163

9.2 Incremental Software Development

Let us review what happens during an incremental software development project.
An incremental software development process is one that does not try to complete
the whole design task in one go. This is in contrast to the more traditional waterfall
model of software development.

One of the features of the waterfall model of software engineering used by
many design methods (see Figure 9.1) is that it primarily assumes that you will
complete the requirements analysis before you start the design phase. In turn, you
will complete the design phase before you start the implementation phase, and so
on. It does accept that there may be some feedback of information from one phase
to any preceding phases and that this feedback may impact upon the products of
the preceding phases. However, this is a secondary issue and the assumption is that
you will be able to complete the vast majority of one phase before ever considering
the next phase. This may be true if this is the fifth or sixth system you have built in
the same domain for the same type of application. It is unlikely to be the case with
your first application in a new domain (such as your first e-commerce project!).

When applying some form of iterative approach, the intention is that each
iteration adds something to the evolving system. Some iterations may lead to a
release of the software system, while others may not. Each iteration:

1. Determines what will be done during the iteration.
2. Designs and implements the required functionality.
3. Tests the new functionality.
4. (Optionally) Creates a new release.
5. Reviews what has been done before moving to the next iteration.

Figure 9.2 depicts the spiral nature of this approach to software development. Note
that in effect, each iteration around the spiral is a mini-software development
project.

The end result is that you incrementally produce the system being designed.
While you do this, you explicitly identify the risks to your design/system upfront
and deal with them early on. Note that this neither means that you are hacking the

Requirements

Design

Implementation

Test

Fig. 9.1 The waterfall model.

164 Agile Software Construction

Requirements

AnalysisDesign

Implementation
& Test

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Key

Fig. 9.2 Spiral model of software development.

system together nor carrying out some form of rapid prototyping (you are not!).
However, it does mean that a great deal of planning is required, both upfront and
as the design develops.

At this point, you may be wondering why I am making so much of this approach
as it is not a million miles away from what we looked at during the chapters on
XP. However, the iterations within XP projects tend to be between 1 and 3 weeks,
with new releases at the end of most iterations. This works best, I believe, for
smaller projects with requirements that are subject to rapid and frequent change
(as discussed in the last chapter). What if, your project is not a small one, but
a larger one in which requirements may still be subject to change but in a more
controlled manner (for example, business rules may change but they have to
be filtered through a complex organisational structure before they affect you).
An iterative approach may still be relevant, but the iterations may be in terms of
months rather than weeks. How do you manage such a project in an agile manner?
This is where feature-driven development will come-in.

9.3 Regaining Control: The Motivation Behind FDD

An important aspect to address at this point is the potential explosion in planning
effort that may be required to deal with the iterative lifecycle model that is being
described here. It is certainly more complex than a linear waterfall lifecycle to
plan and manage. However, given that our goal is to simplify the lifecycle in
order that we can deal with the risks and complexities as well as uncertainties of
the development process, we need to regain some control of the planning and
management aspects of such a project. A key strategy for this is feature-centric
planning. This is discussed in the next section. Feature-centric is not the only aspect

9 · Feature-Driven Development 165

of regaining control of an iterative project; another feature is that of timeboxing
each iteration. The final aspect is being adaptive.

Thus, to regain control of an iterative project the guidelines are:

� The process should be feature-centric. This means that the units of require-
ments (e.g., use cases, user stories) should be unified with the units of plan-
ning (e.g., work packages and tasks).

� Project planning should be based around timeboxes (rather than phases) so
that the length of each iteration is known.

� The project plan should be adaptive that is responsive to the changing risks
and benefits of the system and business environment.

Each of these concepts is discussed in the remainder of this section.

9.3.1 Feature-Centric Development

The term feature-centric is used to refer to development processes that combine
the expression of requirements with the units of activity for planning purposes.
A feature in such a process can be viewed as a unit of “plannable functionality.”
Feature-driven development (FDD) uses features in this way. Note that features
are closely related to use cases and to the realisation of use cases in the standard
Unified Process.

A feature is a schedulable piece of functionality, something that delivers value
to the user. Note the emphasis on schedulable. That is, a feature is derived from a
planning perspective rather than from the user perspective or indeed the require-
ments perspective. This is an important distinction and why features differ from
requirements, user stories or use cases (even if they are derived from them).

To aid in planning, features go further, they must also be associated with:

� a priority (so that they can be ordered),
� a cost (so that they can be accounted for),
� resources (so that they can be scheduled).

Costs and resources can be determined by examining the number of person days
taken to accomplish the feature. Priority can be harder to determine but should
take into account:

� Architectural importance of the feature.
� Utility to the user.
� Risk involved.
� Requirements of the system/use cases.

With consideration given to each in obtaining the priority.
To illustrate what I mean by a feature, consider the requirement “Add a New

File” to an application. This might be described by a user story that explains how
the user might add a new file to a file auditing system. The user story describes

166 Agile Software Construction

this activity from the perspective of the user (obviously) and without reference
to resource or costs (although user stories do have a relative priority). From this
we can extract one or more system features that will be needed to implement this
requirement. For example, these might be:

1. “New File Dialog” feature.
2. Java business objects for new file creation feature.
3. New file details XML writer.

In some cases, a user story or requirement might relate directly to a single feature, or
to many features. In turn, a feature might relate to a single requirement. However,
it is also possible for a feature to support many requirements (such as an object
persistence layer feature or features).

So are features only driven from user stories/requirements/use cases? Not neces-
sarily! There are other sources of information which can lead to features including
(but not limited to):

� Bug fixes.
� Maintenance enhancements (for example, due to changing to a new version

of a language or operating system).
� General tidying operations.

These can all lead to features being added to a feature list without associated
requirements or user stories.

Another issue is how big should a feature be? As before with these sorts of
questions, there is no simple answer.

A feature could take just a couple of days (any smaller and the feature may be
too trivial to consider on its own).

A feature could take a couple of weeks (much larger and it is a candidate for
decomposition into smaller features as these may make monitoring and planning
easier).

The exact size depends on the size of the project, the nature of the work and the
size of the team. For example, earlier on in the lifecycle of a software development
project, the feature may be larger and more fundamental (such as those associated
with creating the underlying object persistence layer, etc.). Later on they may have
a higher user profile, but may be smaller in terms of implementation time (such
as adding additional running totals to some spreadsheet). The approach taken by
some of those working with feature-driven development is to apply the “Feature
per fortnight” rule (Carmichael and Haywood, 2002).

9.3.2 Timeboxing Iterations

The emphasis in most formal development processes is on the phases a project goes
through and then on the steps within the phases that may or may not be carried
out iteratively. This is true of modern processes such as the standard Unified
Process as much as of more traditional processes such as the waterfall process.

9 · Feature-Driven Development 167

However, with iterative processes, although the details of the current iteration
may be known, details of the next or subsequent iterations are less clear. Indeed,
as the aim of this approach is to allow an iteration to be planned, at the start of the
iteration, the time taken for an iteration may only become clear at the start of that
iteration. This is not very good for budget planning, for release planning or indeed
for management of the project. It certainly has issues with fixed release dates.

There is therefore a conflict between the flexible and responsive nature of an
iterative approach and the constraints of budgets and timescales.

This is where timeboxing comes in. Rather than defining each iteration by the
features it will implement, it is possible to define an iteration in terms of the time
period it will take and the ordered list of features that will be attempted during the
time period. Features that are lower down the priority list will only be attempted
if time allows, otherwise they will be relegated to a later iteration.

Timeboxing iteration has a number of benefits including the ability to:

� schedule and plan for incremental releases of the software,
� schedule and implement features,
� manage budgets,
� monitor progress within fixed time constraints.

All within a flexible and responsive process.
What this also means is that regular reviews (typically on a weekly basis) are

required to consider how features and tasks are progressing, which (if any) are
behind schedule and why. It is also necessary to consider what the impact on
the project will be, both from a technical and a business point of view. This may
then lead to modification of the work packages and features to be included in
the current iteration. Note this does not necessarily mean that the plan is revised
weekly, rather that the implications are considered and appropriate action taken
if necessary.

9.3.3 Being Adaptive but Managed

What is required is a management process that is flexible enough to deal with
the changing requirements of the business and users, and to deal with the emerg-
ing uncertainties. It also needs to be one in which we can still monitor progress,
determine resources, ensure quality and guarantee delivery. Most traditional man-
agement styles set out what will be done when and for how long right at the start
of a project and well before detailed design and implementation has begun. The
project is then measured against these estimates with little or no room for change.
However, an iterative project explicitly acknowledges the need for change and the
need for ongoing management.

To this end, an iterative project is effectively planned and re-planned at each
stage of the spiral presented back in Figure 9.2. There is an overall planning activity
before the whole process starts and then there are planning activities at the start
of each iteration. In addition, regular (weekly) reviews may also affect the current
plan for an iteration.

168 Agile Software Construction

In terms of management monitoring of project activity, person days for tasks
should be monitored (on a weekly basis) and fed into the project plan to determine
how the project is progressing relative to the planned effort. However, due to issues
such as holidays, sick leave, etc. It is also necessary to compare the current progress
in elapsed time with the project plan.

9.4 Planning an Iterative Project

Before any project embarks on an iteration development process there are a num-
ber of steps that should be followed. These steps are:

� Identify and prioritise features (the feature list should be continually revised
throughout the project).

� Roughly identify iterations and allocate features.
� Timebox iterations/calculate costs.
� For each iteration
◦ Plan iterations (which should be continually revised during lifetime of

project).
◦ Identify tasks required to implement features.
◦ Allocate tasks to resources (that is, allocate tasks to project members).
◦ Implement iteration.

The key here is that iterations are based on “timeboxes” so that their length is
known and can be managed. Iterations are also based on tasks constructed around
features so that they can be responsive to user feedback and to changing business
requirements. Note that depending upon the size and complexity of the tasks, I
have at times grouped related tasks together to form packages of work that make
high level project planning easier. However, for smaller features, I have tended to
always work directly at the task level.

9.4.1 Iterations, Timeboxes and Releases

The next section will describe how a single iteration is planned, but first let us
review the overall project planning process. This is illustrated in Figure 9.3. We
will discuss this figure in more detail below.

At the start of the project, the project team along with various project stake-
holders create a prioritised feature list. Note that this cannot be done without the
collaboration of those project stakeholders who can state what the priorities of
the features should be. Thus, as with XP, the “business” is an essential part of this
process.

I have found that in general giving features priorities such as High, Medium and
Low is enough (certainly at this stage). Associated with the features at this stage is a
cost. A cost is related to how many person days it will take to implement the feature.
I say related as we are only roughly estimating at this point, and typically we use a
“Three-Point” estimation approach (which is discussed later on), but essentially

9 · Feature-Driven Development 169

Identify and Prioritise
Overall Feature list

Roughly plan our Iterations
and features with

Time Boxes

Revise Features for Iteration and
Plan iteration in detail

Implement and test individual features

Apply acceptance Tests

Create a release if required

Last Iteration?

Fig. 9.3 Overall structure of an FDD project.

170 Agile Software Construction

this requires a best estimate, an average estimate and a worst-case estimate to be
given. The overall cost is derived from these three estimates. Finally, the number
of software engineers involved with the feature is also estimated. We now have our
initial feature list.

Next, we try to determine how many iterations we expect to have, how long the
iterations will last and which features will be in the iterations. This can only be done
with the involvement of those business representatives who have the knowledge
and authority to agree to the timescales being discussed. In general, we have found
that this usually involves a series of meetings with the client representatives, during
which exact timescales for timeboxes, features for iterations, etc. are agreed. In
general, timeboxes should not change, but the features implemented within the
iterations defined by the timeboxes may.

From this, we emerge with an outline plan for what will be done when and at
what point we will be completing various iterations of the end system.

As an example, consider the following iteration plan, taken from an actual
project of a few years ago. There are five iterations in total for a legal advice expert
system. The first iteration aimed to explore the problem domain and to produce a
prototype expert system based on a combination of a simple Case-Based Reasoning
system and a Rule-Based Reasoning system. The second iteration aimed to fill out
this prototype with a larger amount of domain knowledge to confirm the viability
of the approach. Iteration 3 then aimed to produce a commercial quality version of
the initial prototype. Iteration 4 introduced a variety of management information
system aspects to the system to review results, advice given, problems not dealt
with, etc. The final iteration would address user feedback and any deployment
issues encountered earlier in the project.

The timing for the iterations were

Iteration 1: Analyse and Prototype
58 person days. April 2003 – end of June 2003

Iteration 2: Prototype II
119 person days. July 2003 – start of December 2003

Iteration 3: Pilot and Develop
55 person days. December 2003 – end of February 2004

Iteration 4: Develop II
41 person days. March 2004 – April 2004

Iteration 5: Final Release
16 person days. End of April 2004 – mid May 2004.

ID Task Name Start End Duration
Q2 03 Q3 03 Q4 03 Q1 04

Apr May Jun Jul Aug Sep Oct Nov Dec Jan

1 58d25/06/200307/04/2003Analyse and Prototype

2 119d09/12/200326/06/2003Prototype II

3 55d24/02/200410/12/2003Pilot and Develop

4 41d21/04/200425/02/2004Develop II

5 16d13/05/200422/04/2004Final Release

Q2 04

Feb Mar Apr May

9 · Feature-Driven Development 171

Having produced the overall iteration plan, we must now focus on planning
the first iteration in detail. Note, we only plan an iteration in detail as we are about
to start it (and not before). This topic is considered in the next section.

9.4.2 Planning an Iteration

Each iteration will be comprised of a similar set of steps. These steps are presented
graphically in Figure 9.4.

The key steps in any iteration are:

1. Iteration initiation meeting. The length of the iteration should already have
been determined but may be revised at this point. The features to be addressed
in this iteration should be revised and confirmed along with the resources to
be applied, etc. This meeting should involve all stakeholders in the project.

Fig. 9.4 The steps within an iteration.

172 Agile Software Construction

2. Plan features for iteration. Having agreed the features to be addressed, a
detailed plan should be produced mapping features to work packages and
work packages to tasks. The tasks in turn should be allocated to actual re-
sources, etc. This plan must be accepted by the key stakeholders (including
the clients).

3. Analyse the requirements associated with the features. This may involve writing
or revising a use case document, designing new GUI displays, determining
the user interaction sequence, etc. The acceptance criteria for this iteration
should also be identified and agreed.

4. Analyse impact on the architecture. The architecture is the backbone upon
which the iterative process operates, therefore the next step to perform is to
examine the impact any new features are likely to have on the architecture. It
may also involve identifying new architecturally significant entities that feed
into the next step.

5. (Optionally) Revise architecture as required. This step involves revisiting and
amending the application architecture in response to the features required
by this implementation. Note that this may mean that some of the design
and analysis work associated with core features may be performed at this
stage to determine their architectural impact.

6. Next a new acceptance test plan and specification should be written for this
iteration. Note this document may not include all tests as some features may
only be implemented if time allows. The specification of the tests for these
features should be considered to be a task within the work package that will
address that feature. Also, note the difference here between the iteration test
specification and the JUnit tests that might be written as part of a feature.
The test specification is oriented towards the system as a whole (its overall
operation) where as JUnit tests tend to be oriented towards individual class,
subsystems or systems. There is therefore a major difference of focus – both
are required.

7. The next step involves implementing the features. The features are actually
implemented via tasks that should be monitored as normal (although ref-
erence should be made to the timebox of the iteration). It is recommended
that each feature should have a set of associated unit tests that must be passed
before the feature is taken to have been completed. These unit tests should be
part of the code released for the feature and ideally should be added to a unit
test framework (such as JUnit) that can easily be re-run at regular intervals
(such as every time a new build of the system occurs).

8. Once the features are implemented, the new system should be tested (this
includes the generation of a test report). This includes unit tests and accep-
tance tests. All tests should pass before the iteration is allowed to proceed.
If any tests fail, then the release cannot be deployed and the problems must
be corrected. If earlier steps have been adhered to, the unit tests should pass
and thus it should only be the acceptance tests that cause a problem. At
this point, the project needs to determine why the system/acceptance tests
have failed. If this is because of some features that have been moved to a
subsequent iteration, then the acceptance tests need to be changed. If it is
due to some missing or erroneous functionality then this functionality needs

9 · Feature-Driven Development 173

to be removed (in order to release on time) or if it must be included then
the problems must be addressed. In general, time should be allocated to this
process to allow for such unforeseen problems (as with the best will in the
world they will occur).

9. The new application should then be deployed to the client who should then
perform any agreed user acceptance tests. This may lead to the revision of
the deployed system, if and when deficiencies are identified.

10. A post iteration meeting should review the progress made during the iteration,
it should consider any issues that arose and re-prioritise any features that
were not addressed. Again, this should involve all project stakeholders.

11. At this point, a decision should also be made regarding the validity of the
next iteration and whether any further iterations are required.

One outstanding issue for this iterative approach is what comprises the acceptance
tests at the end of an iteration. This cannot be carved in stone upfront as the
iteration may have changed once started (as features may have been moved due
to changing business or user requirements). This is an area that requires careful
management and understanding between the various stakeholders in the project.
Typically it means that the “features” implemented must be tested and that the
acceptance tests must be based on these features. However, as the features may
change, the acceptance tests need to be flexible enough to take this into account.

9.4.3 An Aside on Planning within an FDD Project

I have probably been involved in more work managed using feature-driven devel-
opment (FDD) than any of the agile methods. And one comment made by one
of the clients sticks out in my mind. We had worked on a system over a couple of
years, with at least six iterations developed and successfully released. Near the end
of this project, she commented to me one day, that the thing that had surprised her
the most was the amount of planning we had done on the project. We had planned
the iterations, and then at the start of each iteration we planned the details of that
iteration and reviewed the plans as we progressed and had moved features into
other iterations as required. She had thought that an iterative and incremental
approach would have less planning in it! How wrong she had been? However, she
also commented that ours had been the only project during her time with her
employer that had delivered on time and within budget!

9.4.4 Estimating the Cost of a Feature

The approach I have taken over the last few years towards estimating the cost
of features is heavily influenced by the approach described by Carmichael and
Haywood (2002). This approach involves applying three-point estimating. Three-
point estimating involves producing three estimates of the effort that will be
required to implement a feature. These are:

174 Agile Software Construction

Fig. 9.5 Three-point estimating for a list of features.

� The best-case scenario. This represents the situations where everything goes as
well as it could and there are absolutely no surprises or problems encountered.

� The best guess at what it will really take. This represents the situation where
mostly everything goes okay, but one or two unexpected situations occur
which take a little longer than originally expected to handle.

� The worst-case scenario. This represents the situation where major issues were
overlooked (because they were not obvious until implementation started).

Why have these three estimates. Partly it acknowledges the difficulty of estimating
how long something will take to implement before you actually implement it.
It also reflects the fact that some people are more optimistic and some more
pessimistic than others. And, thus a range of estimates can capture their different
views.

A table illustrating this style of estimating for a list of features is illustrated in
Figure 9.5. The table illustrates the feature, its priority and the three estimates for
best, most likely and worst-case scenarios.

The overall estimate for each feature is derived by applying a formula in the
underlying spreadsheet. There are various formulas that could be applied; in this
case we have applied the following formula:

(Best case + (4 × likely case) + worst case)/6

This formula gives weight to the most likely case but also takes into account the
range from the best and worst cases. It is possible to take this further and use a
pseudo standard deviation to gain an estimate of how reliable the numbers are.
However, care needs to be used here as these are still estimates and performing
further numerical analysis on them to produce some pseudo levels of probability
is likely to end up providing a false sense of security rather than any illumination
on the likelihood of completing the project on time!

Finally, the other technique I have used to help with producing reasonable esti-
mates is to involve the best and most experienced developers, designers, managers
working on the project (if the project is small enough, then all those involved can
help) as well as gaining input from the end users.

9 · Feature-Driven Development 175

9.5 Architecture Centric

Feature-driven development or feature-centric development (FCD) is only feasible
(and successful) if there is a solid architecture on which each iteration can be built.
This section examines what is meant by an architecture and why it is central to a
successful iterative process.

9.5.1 Why Architecture Centric?

One problem with an iterative and incremental approach is that if no order or
structure was defined for the application it could (would?) grow more and more
unwieldy and more and more dis-organised as each iteration progressed. To ensure
that all the various parts fit together, there needs to be something. That something
is the architecture. The architecture is the skeleton on which the muscles (function-
ality) and skin (the user interface) of the system will be hung. A good architecture
will be resilient to change and to the evolving design and implementation. The
Unified Process explicitly acknowledges the need for this architecture by being
architecture centric. It describes how you identify what should be the part of the
architecture and how you go about designing and implementing the architecture.
The remainder of the Unified Process then refers back to that architecture.

Obviously, the generation of this architecture is both critical and difficult. Many
people think therefore that the architecture must be defined in its entirety upfront,
at the start of the whole process. While this might make life easier (if you could
really do it), in general you won’t know all the details of the architecture until the
end. Therefore, even the Unified Process prescribes the successive refinement of
the executable architecture during each iteration, thereby attempting to ensure
that the architecture remains relevant. With an adaptive, agile approach, this is
even true.

As the architectural aspects of any system developed with an iterative process are
so important, the remainder of this section will discuss the role of the architecture.

9.5.2 Architecture Defined

In this section, we will try to define what we mean by an architecture. A software
architecture encompasses

� the overall plan for the structure of the system. That is, it is the blueprint for the
system. It should be possible to read the architecture and gain an appreciation
for how the system was structured (without needing to know the details of
the structural elements).

� the key structural elements and their interfaces. That is what with which ele-
ments make up the system, their interfaces and how they are plugged together.

� how those elements interact (at the top level). That is, when the various elements
of the architecture interface, what do they do and why do they do it.

176 Agile Software Construction

� how these elements form subsystems and systems. This is a very important as-
pect of the architecture. Early identification of the core systems and subsystem
of the design not only helps organise future design (and implementation)
work, it helps promote reuse and the comprehensibility of the system.

� architectural style that guides this project.

The intention is that within this architecture, designers are then free to work in
the “spaces” left for them by the architecture. However, this is not the end of the
story, the software architecture also involves:

� How the system will be used?
� What the functionality of the final system is expected to be?
� Any performance issues that need to be addressed (these may involve more

detailed development of the software architecture’s implementation to assess
performance constraints).

� Resilience to further development.
� Economic and technology constraints and tradeoffs. The architecture can

consider different solutions to the same problem, allowing different techno-
logical solutions to be aired and the most appropriate adopted (for example,
CGI scripts versus Java servlets on a web server).

9.5.3 Why Have an Architecture?

Let us review the argument being made about why an architecture is a critical
element of the object-oriented design process. We need an architecture to

� understand the system. Software systems can be large, complex and must meet
conflicting requirements. An architecture provides a convenient blueprint
or model of the system to be produced. It abstracts out much of the imple-
mentation detail, but “positions” the elements that must meet the various
functional requirements.

� organise development. It helps organise “plumbers” and “electricians.” That
is, it helps firstly to separate out different concerns so that those involved
in the “plumbing” of the system only need to worry about plumbing issues.
However, it also identifies how they are related, so that the points at which
different concerns intersect, are well documented and clearly specified (for
example, in the central heating boiler).

� promote reuse. The problem with writing reusable code is that you need to
identify that what you are producing is reusable. I have personally been in
situations where two people on one project are reproducing the same solution
but from different aspects. In at least one case, they were sitting opposite to
each other. It is certainly easier to produce reusable code the second, third
or even fourth time you are designing and implementing a system than the
first. Indeed, in many systems, the only form of reuse that occurs is at the
class level, i.e. at a very detailed level and is identified by the coder during
implementation. However, an architecture can help at a much higher level by

9 · Feature-Driven Development 177

identifying critical systems and subsystems early on. Common subsystems
can then be made reusable.

� promote continued development. Few systems of any size or consequence are
produced and never altered. Instead, it is much more common for a system
to evolve over time with new requirements being identified and new func-
tionality added or existing functionality modified. The original architecture
can be essential in helping to control the evolution of the system over time
(both within a single release and between releases of a system). Indeed, a
good architecture need change little over the lifecycle of a system but can
be instrumental to the success of future releases. This is because it provides
the overall structure into which the new additions or modifications must
be fitted. Often, the actual design of the system is too detailed to allow an
overview to be gained, and thus, future designers and implementers may
misinterpret part of a design or (worse) ignore it. The architecture can help
to minimise such problems.

9.5.4 Architecture Myths

At this point, let us stop and stand back and consider some of the myths that
surround the concept of an architecture. For a start, it is important to realise
that the architecture and the design are not the same thing (indeed we hinted at
that in the last paragraph) but it is important to re-iterate this. The architecture
highlights the most significant elements of the design. These include the major
systems and subsystems, their interfaces, how the system will be deployed, etc. It
does not include many details of the systems and subsystems and how they are
implemented – that is the job of the design. It is useful to picture the level of detail
in the architecture and the level of detail in the final design as bar charts as is done
in Figure 9.6. As can be seen from this diagram, the architecture leaves much out,
while the design must address many more aspects in detail.

Another myth to be debunked is that the architecture and the infrastructure
are the same thing. This is an easy mistake to make (not least given what we have
said about the role of the architecture). However, it is important to remember

Use Case Analysis Design Deployment Implementation Test
ModelModel Model Model Model Model

Total size of model

Amount of model in
Architecture

Fig. 9.6 Relationship between design and architecture.

178 Agile Software Construction

that the architecture only captures those elements of the design that are necessary
to provide an understanding of the overall design of the system. In fact, Jacobson
et al. (1999) state that only about 10% of all the classes in a design are architecturally
significant. The remaining 90% may well be functionally significant but are not key
to understand the overall structure of the system. However, for the infrastructure
of the system, i.e. the essential functionality of the system, it is likely that many
more classes will be needed (indeed it is likely that at least 50% of the classes in
the design will make up the infrastructure).

9.5.5 Plan Incremental Build of Software

Once you have put an architecture in place, you are in a position to plan an
incremental, feature-centric approach to further implementation and extension.
The development of the architecture should have helped to identify the appropriate
subsystems, active classes, interfaces, etc. which can be used as the starting point
for further iterations of a development process.

Of course, this is where approaches such as FDD come-in. They provide the
managed, incremental development necessary. While the architecture provides
the backbone on which each iteration can be grown.

It should also be noted that the architecture does not try to be all encompassing
and incorporate hooks for all possible required features. Rather, it should represent
the core features and provide all those hooks for architecturally significant features
or those features that are most likely to be incorporated.

9.6 FDD and XP

One thing you may have noticed in this chapter is that we have focussed almost
exclusively on planning an iterative project and how FDD can help with this.
But what about modelling your solution or implementing that solution? This is
where agile methods such as Agile Modelling and eXtreme Programming come-
in. Feature-driven development provides a way of controlling the iterative and
incremental nature of agile projects. It does not really have anything to say about
how you implement those features.

Features can be implemented in a variety of different ways using a variety of
techniques. However, taking an agile approach means that applying the techniques
we have discussed so far in this book can work extremely well.

Within a development model in which FDD is used to plan the details of
iterations and in which features are treated as the tasks to be performed, then
applying Agile Modelling and XP practices can result in a workflow resembling
that presented in Figure 9.7.

Note that within this approach, we are using Agile Modelling to allow any
modelling activities to take place and XP practices to implement the required
behaviour. Also, note that we are assuming here an explicit analysis step that
involves some design and/or modelling work in order to determine how the feature
should be implemented or broken down into tasks. This reflects the higher focus

9 · Feature-Driven Development 179

Start Task

Pair up

Initial analysis of task
(modelling used to analyse current implementation /

review alternative approaches / consider tests)

Define test and code it

Code business classes
for test

Run test

Task complete?

Integrate

Pair breaks up

no

yes

tests fail

test fail

test passes

Design / modelling session
(to review evolving solution /

consider issues)

Break feature
down into tasks and allocate tasks

(may involve modelling / design work)

Select Task

Revise Features
For Next Iteration

Plan iteration in detail

Start Feature

Feature Completed

All Features Implemented

no

no

yes

yes

Agile modelling
and XP

Fig. 9.7 Combining FDD with Agile Medelling and XP.

180 Agile Software Construction

in this chapter on analysis and design than may have been the case in previous
chapters. Note we are still not trying to promote a large up-front design, merely
acknowledging that in larger software systems you need to know where you are
going in order to try and minimise the problems that may be caused by un-
guarded or un-informed development work (which is much easier in a big software
system).

An important point to note, and one that might mean that hardened XP de-
velopers will say that we are not doing XP is that we are not (explicitly at least)
applying the planning game. This is because the planning game is effectively
subsumed by the role played by the feature-driven development process itself. I
personally do not have a problem with this and in fact recognise it as a benefit
of the FDD – there is a greater emphasis on planning. That is not to say that the
planning game has nothing to offer FDD, and in many ways, the planning activi-
ties I have used within the FDD process have been influenced by ideas within the
planning game. Indeed, they have many of the same motivations including the full
cooperation and involvement of the “business” representatives in feature-oriented
planning.

A final point I would make with regard to the application of XP practices is that
the remaining XP practices are still relevant and still applicable within an FDD
planned project. Whether you apply them or not is to some extent an issue for the
particular project at hand.

For example, one of the most visible features of an XP project is the use of
pair programming. Indeed, it is often the one thing that everyone who has heard
about XP is aware of. However, as was discussed in the last chapter, it is not always
practical. FDD certainly does not mandate pair programming, and thus, it is up to
you whether you apply it within an FDD project or not. FDD aims at controlling
adaptive, agile and iterative projects that may or may not be XP based. In my own
case (and this may be taken as sacrilege by the XP community), I have often applied
it more in some parts of a project and less in others. This is often influenced by
the resources available and other practicalities at that time. My general rules of
thumb regarding whether to employ pair programming or not, include questions
such as:

� How experienced are those involved?
� How complex or problematic is this area of code being worked on?
� What impact might a problem within this area have?

The end result might be that I am not employing XP per se, but I am exploiting
many of the features of XP, Agile Modelling and feature-driven development.

9.7 Summary

In this chapter, we have examined an agile approach to manage the complexity
and concurrency inherent in (larger) iterative software development projects.

9 · Feature-Driven Development 181

This approach, called feature-driven development, manages the issues involved
by being:

1. Feature-centric.
2. Timebox focussed.
3. Adaptive to changing requirements.

It does not prescribe how the features should be implemented and approaches
based on Agile Modelling and XP practices fit extremely well with FDD. In the
next chapter, we will explore how one such FDD project was planned.

10
Planning a Sample FDD Project

10.1 Introduction

In this chapter, we will look at how a project was planned using the ideas presented
in the last chapter on Feature-Driven Development. As you will remember, an FDD
project is based on the identification of features, their implementation as tasks
(possibly grouped into packages of work) implemented within a fixed time box
for each iteration.

Note that, in the context of this chapter, it is not important that you fully
understand what each feature represents (indeed with a detailed explanation of
the application and the associated business processes they would not be clear, and
such topics are outside the scope of this chapter) but rather that you see how such
a project planning process evolves and how the different aspects of the process
relate.

The remainder of this chapter is structured in the following manner. In Section
10.2, we will consider how this project started off. In Section 10.3, we will discuss
the overall project plan. Section 10.4 describes how the first iteration was planned.
Section 10.5 then briefly addresses what happened post iteration 1 delivery.

10.2 Initiating the Project

The particular project being considered is a real system (with names changed to
protect the innocent). One interesting aspect of this system was that it was based
on an earlier system that we had implemented for the clients. The previous system
had been implemented some time before in a non-agile manner. The resulting
software worked, but by now the client’s requirements had moved on. The new
project was proposed as an agile development in order that emerging and future
requirements could be incorporated into the software in a more natural way. In
retrospect, I believe that one of the reasons that the client was willing to do this
was that we had already proved to them that we could deliver the goods, and thus
we had already built up a significant level of trust with them prior to moving to
an agile way of working!

Another very important feature of the project was that the client agreed to
provide a “virtual” on-site customer representative (whom we will call SM for

183

184 Agile Software Construction

short). SM was a senior Business Analyst with the client, who not only knew the
existing business set up inside out, but also worked closely with the business to
determine exactly what their new requirements would be. SM was thus in an ideal
position to act as the “on-site client.” Although SM was not on-site all the time,
SM was available on the phone or via email and would always answer any question
we threw at her.

At the start of the project, SM and the team sat down to work out what features
were required of the system (by the end of the project, SM started to present
new features to us in a form that was essential to a user-requirement set-up for
entry as a feature!). Each requirement was allocated a priority and one or more
resources. It was then estimated to obtain a cost. Where features seemed too big,
they were broken down into smaller features. Where priorities were not clear,
SM returned to the business to resolve any of the issues and help produce a
stronger understanding of what was required. In general, over a number of days,
a detailed feel for the highest priority features was obtained and all features had a
priority.

In consultation with the business (and taking into account the activities of the
business throughout the year), a timetable for iterations was also derived. Using
the features, costs, resource estimates and priorities, features were then allocated
to iterations. This was done on the basis of what could be expected within the
fixed time boxes allocated to the iterations.

The resulting proposed project plan was then returned to the business for
sign off. Interestingly, the business side of the project was run using the Prince
2 methodology that may at first seem too inflexible to accommodate an agile
development process. However, the two approaches glued perfectly together (with
a little goodwill on both the sides).

10.3 The Overall Project Plan

The end result of the initial project meetings was a document summarising the
features to be implemented, their priority, cost and resources required, framed
within the context of a set of fixed time iterations. This last feature proved impor-
tant to the business in a number of ways. Firstly, it specified the maximum cost
for an iteration (as they knew the cost of each feature in terms of person days as
well as how many elapsed months the iteration would take).

At this point the budget for the project was accepted and the project plan signed
off.

The resulting project had the following time boxed iterations (Figure 10.1):
The individual iterations are presented below. The overall plan for the civil

audit extensions is also presented below.

Iteration 1: File Review Audit.
This iteration will modify the core architecture of the application to support a
new type of audit (the file review audit) and provide business and GUI logic
for the execution of a File Review Audit. Note that this first iteration is limited
to conduct the file review audit on a single machine.

10 · Planning a Sample FDD Project 185

ID Task Name Start End Duration
Q4 02 Q1 03 Q2 03

Mar MayAprSep Oct Nov Jan Feb

1 13w06/12/200209/9/2002Iteration 1: File Review Audit

2 7w24/01/200309/12/2002Iteration 2: Synchronization

3 6w07/03/200327/01/2003Iteration 3: User feedback / usability

6 6w28/05/200317/04/2003
Iteration 6: Management Information
Processing

7 5w02/07/200329/05/2003Iteration 7: Additional Audit type 1

4 4w04/04/200310/03/2003
Iteration 4: Auditing of management
processes

8

5 3w11/04/200324/03/2003Iteration 5: Quality control audit

4w21/07/200324/06/2003Iteration 8: Additional Audit type 2

Dec Jun

Q3 03

Jul Aug

Fig. 10.1 Proposed iterations.

Iteration 2: Synchronization support.
This iteration will extend the software so that the file review audit can be
conducted concurrently by a number of users on separate machines. This will
involve synchronization of results as well as exchange of information for the
validation of selected files for audit, etc.

Iteration 3: User feedback and usability changes.
This iteration will respond to the feedback provided by actual users from their
experiences of using the software produced from iteration 1.

Iteration 4: Auditing of management processes.
This iteration will introduce a new type of audit to review management pro-
cesses.

Iteration 5: Quality control audit.
This iteration will introduce a new type of audit that will measure the qual-
ity of the material produced by each file associated with a file reviewed in
iteration 1.

Iteration 6: Management Information Processing.
This iteration will look at generating management summary information across
audits.

Iteration 7: Additional Audit Type 1.
The aim of this iteration is to extend the software system to additional types of
audit.

Iteration 8: Additional Audit Type 2.
The aim of this iteration is to extend the software system to additional types of
audit.

The time boxes for each iteration were set at:

Iteration 1: File Review Audit.
230 person days. September 2002–End of November 2002 (elapsed duration
13 weeks).

Iteration 2: Synchronization support.
113 person days. December 2002–Mid Janurary 2003 (elapsed duration 7 weeks
to include Christmas).

186 Agile Software Construction

Iteration 3: User feedback and usability changes.
113 person days. Mid January 2003–Early March 2003 (elapsed duration
6 weeks).

Iteration 4: Auditing of management processes.
46 person days. Early March 2003–End of March 2003 (elapsed duration
4 weeks).

Iteration 5: Quality control audit.
17 person days. Mid March 2003–Early April 2003 (to run concurrently with
the end of Man iteration 1) (elapsed duration 3 weeks).

Iteration 6: Management Information Processing.
113 person days: Early April 2003–Mid May 2003 (elapsed duration 6 weeks).

Iteration 7: Additional Audit Type 1.
70 person days. Late May 2003–Late June 2003 (elapsed duration 5 weeks to
include Easter).

Iteration 8: Additional Audit Type 2.
20 person days. Mid June 2003–Late July 2003 (elapsed duration 4 weeks).

An important point to note is that only the first iteration was firmly planned.
That is, the remaining iterations were speculative and each iteration would be
(and indeed was) planned in detail at the start of that iteration. Thus, the actual
content of iteration 4 changed significantly by the time we got there, and focussed
on a new type of audit altogether – however, we did still do 46 person days of work
at that point!

10.4 Planning the First Iteration

10.4.1 Selecting Features for Iteration 1

Features are selected based on a number of criteria:

1. Importance to the business
2. Level of risk
3. Application requirement

Of course, the priority allocated to the feature is the primary source of this infor-
mation, but not the only one. A feature may be important to the business, but for
a first iteration (for example), the level of risk may be too great and thus it may be
postponed to the next iteration. An example of this occurred during the planning
of this first iteration. One particular feature, known as the management audit,
was undergoing review within the business. This meant that there was a large level
of risk associated with it. That was, that the management audit process would
alter and thus the computer support required by this type of audit would need to
change. As we did not have enough time during the first iteration to implement
all audit types, this audit was postponed to a later iteration. Thus, the risk here
was not technical, but business-related.

10 · Planning a Sample FDD Project 187

Indeed, it was decided to focus on a single, well-defined audit type, for the
first iteration. This helped focus on the features to be implemented at this point
in time. Essentially, only those features required by the basic “File Review Audit”
would be considered. This raised the priority of any such features, while reducing
the relative priority of any other feature. To simplify this process, we created two
features lists, one for iteration 1, and the other for later iterations. Any feature
could have a priority of “high,” “medium” or “low,” and was placed in one of the
two lists. We could thus order the features for iteration 1, and still maintain an
ordered list of other features to be looked at during the start of the next iteration.

The final result was that fourteen features were identified for inclusion in
iteration 1. These fourteen, and their priorities are presented below (along with a
simple description).

As you may note from the above table, not all the features have been categorized
as having a high priority. Instead, some features have a medium priority. This
provides some flexibility within the iteration. For example, if the high priority
features are taking longer to complete than originally anticipated (for whatever
reason), then the lower priority features can be moved to a later iteration, thus
ensuring that the iteration is completed on time and is delivered to the client in a
working form.

Also note that feature F13 relates to the creation of DTD files and sample
XML files for use by the rest of the application. Although this might not be an
obvious feature of the system, it is identified as a separate feature because the other
applications that this application interfaces with also need these DTDs. Thus, this
is a very significant element of the system in its own right, rather than just a
support task for other features.

10.4.2 Feature to Task Mapping

Features represent schedulable requirements and the activity that will realise those
requirements. However, there are two issues, with directly allocating features to
designers/developers to work on:

1. Typically, they represent large scale “functionality” that would be difficult to
monitor except at the highest of levels.

2. Typically, they cut across multiple layers in the architecture requiring mod-
ifications to low-level, back-end frameworks as much as to front-end GUI
components. These different areas require different knowledge and skill sets
that are rarely possessed by a single individual.

Therefore, from the point of view of project planning and project monitoring,
features are not an appropriate project-planning tool. Rather, features are im-
plemented by one or more tasks. Tasks may be relevant to one or more features
(as some architectural change may support more than one feature) and in turn,
features may be relevant to one or more tasks. Tasks are what the developers
actually work on, and are what are monitored, and against which progress is
assessed.

188 Agile Software Construction

Table 10.1 Summarised feature list.

ID Feature Description Priority

F01 Architectural changes Changes to previous architecture required by new
requirements.

H

F02 Closed file report generation
and printing

Generation of the report currently produced by hand by
auditors.

H

F03 Summary and individual
report generation

A (possibly optional) feature of the new system is the ability to
produce reports on each file.

M

F04 Changes to main frame With the introduction of the new audit type various changes
will be required to the screens displayed within the
application.

H

F05 Audit assembly It will be necessary for a user to create an audit by selecting
appropriate files to review.

H

F06 Loading an audit The new type of audits must be loaded H
F07 Writing out audits on

completion
As well as loading the new file review audit it will also be

necessary to save the file review audits.
H

F08 File review audit type A major feature of the new system is a new type of Audit – the
File Review Audit.

H

F09 File review summary Part of the new type of file review is the ability to generate an
on screen summary review of all the files reviewed as part
of the “File Review Audit.”

H

F10 Case file checklist A major part of a file review is the Case File Checklist that
provides a series of questions that will guide the auditor.

H

F11 Cost assessment Another important aspect of the File Review process is the
generation of the Cost Assessment information.

H

F12 Checklist summary
information

A (potentially optional) feature of the new system is to add
summary quality information.

M

F13 DTD and XML files A new feature of this system will be the definition of
additional DTD files to represent file review audits and
individual file reviews.

H

F14 Reviews When an audit is reviewed changes may need to be made to a
completed audit.

M

Note that work packages help to group together individual tasks both for allo-
cating work to actual team members and for organising tasks relative to features.
However, the tasks that are monitored in detail within the project plan, are just
the tasks that individual designers and developers will undertake. These tasks
are schedulable and monitorable tasks of typically between 3 and 8 person days
duration.

So how are features matched to tasks? This is a process of analysis that involves
all the technical team members. During this process, we examine each feature and
try to determine what it will take to implement that feature, what steps we will
need to perform and what we will need to back up the more obvious tasks of each
feature. This is in itself an iterative process that will require refinement, as our
understanding of the set of features improves.

The end result is that a set of tasks is identified, that will implement the features
listed in Table 10.1 and produce a deliverable system. Note that all tasks are
numbered using the following pattern:

<indication of area of system>T:<task number>

10 · Planning a Sample FDD Project 189

Thus, a task dealing with printing is: PT:02
Meaning P for P rinting and 02 for the second task in the printing related tasks.

The other tasks are D for Design, A for Architecture, B for Business objects, M for
Management of data, G for GUI components, I for I ntegration and T for Text
documentation.

The following table presents each of the features, the tasks that implement
the features and a brief description of the tasks. Note that, at this point, no
consideration is given to the ordering of the tasks; instead, the tasks are grouped
together in a logical manner. Hence, all the data management-oriented tasks are
listed together (Table 10.2).

As you will note from the above table, some tasks do not directly relate to
any particular feature. These are tasks such as constructing test release systems,
providing documentation, etc. These are so because these relate to the overall
system and to the production of the final working system rather than an individual
feature. For example, providing a user manual allows potential users of the system

Table 10.2 Feature/task relationships.

Feature ID Task ID Task description

All DT01 Familiarisation with existing system and impact of new features
F09 DT02 Impact on Architecture of File Review Summary
F01/F04 DT03 Review of and design for, architectural changes
All DT04 Test plan and specification for system
F01 AT01 Implementing architectural changes
F14 AT02 Audit review process support
F08/F06/F05/F13 MT01 Review of, and design for, Data Access Manager (DAM) changes
F06 MT02 Implement DAM Changes – reading
F07 MT03 Implementing DAM Changes – writing
F05/F08 BT01 New Audit Type (File Review Audit)
F09 BT02 Design and Implement File Review Summary classes
F10 BT03 Design and Implementation of case checklist classes
F11 BT04 File Review cost assessment classes
F12 BT05 Adding Checklist summary information
F04 GT01 Design and Implement Changes to Main Window
F05 GT02 Designing and Implement Audit Assembly GUI classes and behaviour
F06 GT03 Designing and Implement Loading a scheduled audit GUI classes
F11 GT04 Design and Implementation of Cost Assessment Window classes
F10 GT05 Design and Implementation of “Case file check list window”
F08 GT06 Design and Implementation of Audit Details Window classes
F09 GT07 Design and Implementation of Audit Summary Window classes
F02 PT01 Designing and Implementation of Report generation classes closed file
F03 PT02 Designing and Implementation of Summary and Individual file Report

Generation classes
IT01 Alpha Build and System Testing of system
IT02 Beta build and System Testing
IT03 Release Candidate Build, System Testing and User Acceptance Testing
TT01 User manual document
TT02 Installation manual

190 Agile Software Construction

to have a document that explains how this complex piece of software should be
used. It also illustrates the need for such documentation, whether the system is
being developed in an agile manner or not. Remember, the final end-users don’t
care as to how it was produced, but just whether it helps them to do their job (and
for them, a user manual is very important). However, note that following the agile
principles, the creation of the user manual is scheduled postproduction of any
software. Thus, we will not need to re-write any part of the user manual during
this iteration, due to a change in the software being implemented. Of course, it
may need revision during subsequent iterations, but so will other parts of the
software!

10.4.3 Ordering Tasks for Iteration 1

Having identified the tasks to be performed, we then need to think about how
these tasks will be ordered. In a pure XP project, this might be left to the developers
to determine; however, as we are applying an FDD approach, we will provide an
initial plan of the ordering of the tasks. This can be done in numerous ways, but
the essence of the practice is to consider the dependencies between tasks (an issue
often ignored in projects taking an extremely agile approach). This provides a
dependency graph illustrating how the tasks relate. This does not need to be done
electronically as we are still trying to be agile, and anyway the dependency graph
is not our aim per se, rather it is a temporary tool to help in the ordering of the
tasks. Therefore, the dependency graph can be created on a sheet of A4 using a
pen or pencil, or on a whiteboard, etc. Personally, I tend to prefer whiteboards, as
it is easy to rub out the pen-marks and good at being viewed by multiple people.

The dependency graph is not the only influence on ordering, as the priority
of the features that the tasks related to was also taken into account. Therefore, an
attempt was made to place medium priority feature-oriented tasks to the back of
the dependency graph. During this process, one important issue became apparent.
Feature 14, which provided the ability to review completed audits, although only
a medium priority, needed to be accounted for early on, if it was to be included at
all. In discussion with the on-site client and the Business, it was decided that this
was an important feature and its priority was raised too high.

Once we had the dependency graph in a state with which we were happy, we then
needed to take into account the developers who will be working on the tasks. In this
case, pair programming was not used as a standard way of developing; rather each
task was initially allocated to the developer with the most relevant experience for
that task. This resulted in a dependency graph with resources attached to each task.

Next, the dependency graph was used to order the tasks on a per developer-
basis. Any discrepancies relating to the amount of work allocated to one particular
developer were then addressed with tasks being moved among the developers. Note
that this was done with the agreement of all the developers and was not laid down
from on high.

The resulting set of tasks were then entered into (a simple) project diagramming
tool. Note that we did not use a heavy-weight project-planning tool, as it was not
considered necessary and that it would be an impediment to our agile approach.

10 · Planning a Sample FDD Project 191

In fact, we used the simple Gantt charting features of Visio to create a Gantt chart
that could be easily changed, but against which progress could be monitored.

10.4.4 The Gantt Chart for Iteration 1

The following Gantt chart provides a detailed break down of the tasks to be
performed for iteration 1 of the project. Note that the “Person Days” column
relates to the number of person days spent on the task, whereas the “Elapsed
Duration” column relates to the elapsed time spent on the task. Thus, a task of
12 person days, worked on by three people would have an elapsed duration of
4 days. Equally, an ongoing management task has an elapsed time of 65 days, but
the number of person days spent on this task is 13 (see Figure 10.2).

In the Gantt chart presented in Fig. 10.2 some buffer has been left within this
plan for unscheduled events (such as holidays and illness). We have not tried to
have everyone utilizing 100% of the time. We believe that this reflects reality; as well
as allowing developers time to expand their experience. However, in the context of
an agile development, it also reflects the need to allow for pair programming time.
Earlier I stated that “In this case, pair programming was not used as a standard
way of developing” at the time you may have thought this was an odd way of

ID Task Name Start End
Oct 2002Sep 2002 Nov 2002

10/139/8 10/6 11/2411/310/279/22 10/20 12/111/109/299/15 11/17

1

2

3

4

6

5

10

11

15

16

17

18

19

20

22

21

12

13

23

14

8

9

24

25

26

27

28

Elapsed Duration

3d

3d

4d

4d

4d

3d

6d

6d

9d

7d

10d

9d

8d

4d

10d

4d

8d

11d

10d

9d

7d

10d

3d

8d

9d

5d

1d

Person Days

12d

3d

4d

4d

4d

3d

6d

6d

9d

7d

10d

9d

8d

4d

10d

4d

8d

11d

10d

9d

7d

10d

9d

18d

14d

5d

1d

Resource Name

All

Steve

John

Will

Ben

Steve

Steve

Steve

Steve

Steve

Ben

Ben

Ben

Ben

Ben

John

John

John

John

Steve/Ben/Will/

Steve/Ben/Will/

John

John

Steve/Ben/John

Will

Will

Will

Will

Will

John

7 8d8d

Dec 2002

12/8 12/15

DT01: Familirisation

DT02: Impact on existing architecture
of new Audit Type

DT03: Impact on architecture of
Summary information
DT04: System test plan and
specification

AT01: Implementing Architectural
Changes

MT01: Review of, and design for, DAM
changes

MT02: Implement DAM changes for
loading
MT03: Implement DAM changes for
Writing

BT01: New Audit type

BT02: Design and Implement File
Review Summary Classes
BT03: Design and Implement case
checklist classes
BT04: File Review Cost Assessment
classes
BT05: Adding checklist summary
information
GT01: Design and Implement
Changes to Main Frame

GT02: Designing and Implement Audit
Assembly GUI classes

GT03: Designing and implementing
loading a scheduled audit gui classes

GT04: Design and Implement of cost
assessment window classes

GT05: Design and Implement of "Case
File Checklist" window classes

GT06: Design and Implement Audit
Details Window classes

GT07: Design and Implementation of
Audit Summary Window

PT01: Designing Report generation
classes for closed file
PT02: Design and Implementation of
Summary and Individual file reports

IT01: Alpha build and System testing

IT02: Beta Build and System Testing

IT03: Release Candidate Build,
System testing and User Testing

TT01: User manual document

TT02: Installation manual

AT02: Audit Review Process Support

11/09/200209/09/2002

16/09/200212/09/2002

17/09/200212/09/2002

17/09/200212/09/2002

16/09/200212/09/2002

23/09/200218/09/2002

03/10/200224/09/2002

24/09/200217/09/2002

02/10/200225/09/2002

14/10/200203/10/2002

29/10/200215/10/2002

11/11/200230/10/2002

14/10/200204/10/2002

28/10/200215/10/2002

25/10/200214/10/2002

19/11/200215/11/2002

29/11/200220/11/2002

12/12/200202/12/2002

06/12/200202/12/2002

09/12/200209/12/2002

27/09/200217/09/2002

08/10/200230/09/2002

22/10/200209/10/2002

04/11/200223/10/2002

14/11/200205/11/2002

23/09/200218/09/2002

11/10/200230/09/2002

27/09/200224/09/2002

Fig. 10.2 The Gantt chart for iteration 1.

192 Agile Software Construction

phrasing the fact that we weren’t applying pair programming (hey, we never said
we were doing Extreme Programming!). But it was actually intentional. This is
because the development team was encouraged to employ pair programming
techniques when they thought it would be to their advantage. For example, when
they were concerned that they were straying into unknown territory, or needed
to work out a difficult algorithm, etc. This approach worked very well (not least
due to the particular group of developers and the dynamics within the team) but
needs to allow time within the schedule for developers to leave the task they are
working on and to pair program with a co-worker. Ironically, it means that the
more experienced software engineers were given the largest buffers to allow them
to work alongside more junior developers more often (although I can vouch from
personal experience, the benefits can be attained the other way around as well).

10.5 Post Delivery

The software developed for the client was delivered on time and with all features
implemented. It was then presented to a group of users who would act as champi-
ons of the software within each region of the UK. This group of users were trained
on the software and were provided with the user manual and then let loose. They
used the software in parallel to the existing systems for a time (partly for legal
reasons). As others in their regions saw the new software, more users came on
board. This approach was taken, as this was an iteration 1 delivery which was
complete in itself, but not complete in terms of the whole business press, and thus
some tasks needed to be performed manually. While this was happening, the team
embarked on iteration 2. As before, the feature list for the iteration was refined,
tasks identified and work begun. By the time this iteration was complete, the users
of the iteration 1 delivery were able to provide valuable, real-world feedback on
the usability of the system. The comments then formed the basis of iteration 3.
This allowed the users to see that they were actually being listened to and that
their views mattered.

10.6 Summary

This chapter has illustrated how a project using a Feature Driven approach, within
an agile framework, can be planned (and presented to a client unfamiliar with
agile methodologies). It also illustrates how being agile does not mean hacking, or
not planning. Indeed within the framework of FDD, agile modelling and extreme
programming become well planned, well controlled and monitored, and clearly
organised operations. This is not to say that the same cannot be said for a pure
XP project. However, as the size of the project grows, the use of techniques such
as FDD can make life much more manageable!

11
Agile Methods with RUP and PRINCE2

11.1 Introduction

In this chapter, we will consider how some of the agile techniques talked about
thus far can fit with more traditional software engineering methods. In particular,
we will focus on the Unified Process (also known as the Rational Unified Process
or RUP) and PRINCE2.

The Unified Process is a design framework that guides the tasks, people and
products of the design process. It is a framework because it provides the inputs
and outputs of each activity, but does not restrict how each activity must be per-
formed. Different activities can be used in different situations, some being left out,
others being replaced or augmented. It was originally developed by Ivar Jacob-
son, Grady Booch and James Rumbaugh at Rational. They originally developed
the Unified Modelling Language (or the UML) and then went on to create the
Unified Process as the process side of their unification efforts (prior to the UML
and Unified Process there were a number of competing but similar methods avail-
able including OMT, the Booch method and Objectory (Booch, 1994; Rumbaugh
et al., 1991; Jacobson et al., 1992). All of these methods (which the authors were
each heavily involved in) provided inspiration for UML and the Unified Process.
For more details on the Unified Process, see Hunt (2003) and Jacobson et al.
(1999).

PRINCE, which stands for Projects in Controlled E nvironments, is a project
management method covering the organisation, management and control of
projects. PRINCE was first developed by the Central Computer and Telecommu-
nications Agency (CCTA), now part of the UK’s Office of Government Commerce
(OGC) in 1989 as a UK Government standard for IT project management. The
latest version of the method, PRINCE2, is designed to incorporate the require-
ments of existing users and to enhance the method towards a generic, best practice
approach for the management of all types of projects.

In the remainder of this chapter, we will consider the relationship between
agile modelling and the Unified process (or RUP). We will introduce the RUP
and then consider how modelling is handled within the RUP and how agile mod-
elling can augment the RUP process. We will then consider how feature-driven
design fits with RUP before discussing how agile methods relate to the PRINCE2
method.

193

194 Agile Software Construction

11.2 Agile Modelling and RUP

The Unified Process or the Rational Unified Process (sometimes known as RUP)
(Jacobson et al., 1999; Hunt, 2003) is a framework for handling the whole lifecycle
of a software development project. It is referred to as a framework because it
allows the overall suite of activities to be customised and modified as required for
a particular type of application (this is illustrated in Figure 11.1).

Why then is the Unified Process called a process and not the Unified Framework?
It is called a process because its primary aim is to define:

� Who is doing what?
� When they do it?
� How to reach a certain goal (i.e. each activity)?
� The inputs and outputs of each activity.

It is thus an engineered process. In fact, it is comprised of a number of different
hierarchical elements (see Figure 11.2). In terms of the agile movement, it is
towards the heavyweight end of software methods and thus may not initially
appear compatible with processes such as those that have come out of the agile
movement.

The Unified Process is actually comprised of low-level activities (such as finding
classes), which are combined together into disciplines formally known as work-
flows (which describe how one activity feeds into another). These disciplines are
organised into iterations. Each iteration identifies some aspect of the system to be
considered. How this is done is considered in more detail later. Iterations them-
selves are organised into phases. Phases focus on different aspects of the design
process, for example, requirements, analysis, design and implementation. In turn,
phases can be grouped into cycles. Cycles focus on the generation of successive
releases of a system (for example, version 1.0, version 1.1, etc.).

This process is iterative and incremental and is adaptive in that it is responsive
to changes in business or user requirements as well as to feedback from users. It is

??

Fig. 11.1 The Unified Process is a framework.

11 · Agile Methods with RUP and PRINCE2 195

Cycles

Phases

Iterations

Workflows

Activities

Fig. 11.2 Key building blocks of the Unified Process.

in these respects that aspects of the agile movement can be introduced into RUP
as we will see later.

The Unified Process, although a sound basis upon which to base the develop-
ment process, is a framework which explicitly recommends modification where
appropriate (again helpful from the point of view of introducing aspects of the
agile movement).

11.2.1 Overview of the Unified Process

There are four key elements to the philosophy behind the Unified Process. These
four elements are:

� Iterative and incremental,
� Use-case driven,
� Architecture-centric,
� Acknowledges risk.

Iterative and Incremental

The Unified Process is iterative and incremental, that is, the design process is
based on iterations which address either different aspects of the design process
or more the design forward in some way (this is the incremental aspect of the
model). This does not mean that the Unified Process is a process based on rapid
prototyping. Any prototypes that are developed in the Unified Process are used
to explore some aspect of the design. This could be to verify some architectural
issue, different design options, assess a new technology, etc. Indeed, the use of an
iterative and incremental approach in the Unified Process requires more planning
(rather than less planning) as compared to approaches such as those based on the
waterfall model (as was indicated when we discussed Feature-Driven Development
in Chapter 9).

Essentially, the following holds with the iterative approach in the Unified
Process:

� You plan a little.
� You specify, design and implement a little.

196 Agile Software Construction

� You integrate, test and run.
� You obtain feedback before the next iteration.

The end result is that you incrementally produce the system being designed. While
you do this you explicitly identify the risks to your design/system Unified Process
front and deal with them early on (see later). Note that this does not mean that
you are hacking the system together nor are you carrying out some form of rapid
prototyping (you are not). However, it does mean that a great deal of planning is
required, both upfront and as the design develops.

Use-Case Driven

The Unified Process is also use-case driven. Remember from earlier that use-cases
help identify who uses the system and what they need to do with the system (i.e.,
the top-level functionality). Thus, use-cases help identify the primary require-
ments of the system. One problem with many traditional approaches is that once
the requirements have been identified there is no traceability of those require-
ments through the design to the implementation. Instead designers (and possibly
implementers) must refer back implicitly to the requirements specification and
make sure they have done what is required of them. This is then verified by test-
ing (by which time it is often too late to make any major modifications if the
functionality is either wrong or missing).

In the Unified Process, use-cases are used to ensure that the evolving design
is always relevant to what the user required. Indeed, the use cases act as the one
consistent thread throughout the whole of the development process as illustrated
in Figure 11.3. For example, at the beginning of the design phase, one of the
two primary inputs to this phase is the use-case model. Then explicitly within
the design model are use-case realisations that illustrate how each use-case is
supported by the design. Any use-case that does not have a use-case realisation
is not currently supported by the design (in turn, any design elements which do

Analysis
model

Analysis use
case realizations

Design use
case

realizations Subsystem
Model

Design
model

Source
code

Test
specification

identifies

specifies

organizes

realized
by

implemented
by

tested in

Use case model

inputs + outputs

Fig. 11.3 The role of use-cases.

11 · Agile Methods with RUP and PRINCE2 197

not in some way partake in a use-case realisation do not support the required
functionality of the system!).

To summarise the role of use-cases they:

� Identify the users of the system and their requirements.
� Aid in the creation and validation of the system’s architecture.
� Help produce the definition of test cases and procedures.
� Direct the planning of iterations.
� Drive the creation of user documentation.
� Direct the deployment of system.
� Synchronise the content of different models.
� Drive traceability throughout models.

11.2.2 Lifecycle Phases

The Unified Process is comprised of four distinct phases. These four phases (pre-
sented in Figure 11.4) focus on different aspects of the design process. The four
phases are Inception, Elaboration, Construction and Transition.

The four phases and their roles are outlined below.

Inception. This phase defines the scope of the project and develops the business
case for the system. It also establishes the feasibility of the system to be built.
Various prototypes may be developed during this phase to ensure the feasibility
of the proposal. Note we do not focus on the development of the business case
in this book; it is assumed that the system to be designed is required and a
business case has already been made.

Elaboration. This phase captures the functional requirements of the system. It
should also specify any non-functional requirements to ensure that they are
taken into account. The other primary task for this phase is the creation of the
architecture to be used throughout the remainder of the Unified Process.

Construction. This phase concentrates on completing the analysis of the system,
performing the majority of the design and the implementation of the system.
That is, it essentially builds the product.

Transition. The transition phase moves the system into the users environment.
This involves activities such as deploying the system and maintaining it.

Each phase has a set of major milestones that are used to judge the progress of
the overall Unified Process (of course, with each phase there are numerous minor
milestones to be achieved). The primary milestones (or products) of the four
phases are illustrated in Figure 11.5.

Inception Elaboration Construction Transition

Fig. 11.4 Four phases of the Unified Process.

198 Agile Software Construction

Vision

Baseline Architecture

Full Beta Release

Final Release

Elaboration

Construction

Inception

Transition

Fig. 11.5 Major deliverables of each phase.

A milestone is the culmination of a phase and is comprised of a set of artefacts
(such as specific models) that are the product of the disciplines (and thus activities)
in that phase. The primary milestones for each phase are:

Inception. The output of this phase is the vision for the system. This includes a
very simplified use-case model (to identify what the primary functionality of the
system is), a very tentative architecture and the most important or significant
risks are identified and the elaboration phase is planned.

Elaboration. The primary output of this phase is the architecture along with a
detailed use-case model and a set of plans for the construction phase.

Construction. The end result of this phase is the implemented product that includes
the software as well as the design and associated models. The product may not
be without defects as some further work has yet to be completed in the transition
phase.

Transition. The transition phase is the last phase of a cycle. The major milestone
met by this phase is the final production quality release of the system.

11.2.3 Phases, Iterations and Disciplines

There can be confusion over the relationship between phases and disciplines. Not
least because a single discipline can cross (or be involved in) more than one phase
(see Figure 11.6). One way to view the relationships is that the disciplines are the
steps you actually follow. However, at different times we can identify different
major milestones that should be met. The various phases highlight the satisfac-
tion of these milestones. For example, during the Elaboration phase, part of the

11 · Agile Methods with RUP and PRINCE2 199

R
eq

ui
re

m
en

ts

A
na

ly
si

s

D
es

ig
n

Im
pl

em
en

ta
tio

n

T
es

t

In
ce

pt
io

n

E
la

bo
ra

tio
n

C
on

st
ru

ct
io

n

T
ra

ns
iti

on

time

Fi
g

.1
1

.6
D

is
ci

p
lin

es
ve

rs
u

s
p

h
as

es
.

200 Agile Software Construction

Requirements

Analysis

Design

Implementation

Test

Use case
model

Analysis
Model

Design
model

Deployment
Model

Implementation
model

Test Model

Fig. 11.7 Discipline products.

requirements, analysis, design and even implementation disciplines may act. How-
ever, the emphasis at this time, within these disciplines, will be on elaborating what
the system should do and how it should be structured, rather than the more de-
tailed analysis, design and implementation which occur during the Construction
phase.

The five disciplines in the Unified Process are Requirements, Analysis, Design,
Implementation and Test (as indicated in Figure 11.6). Note that the Design,
Implementation and Test disciplines are broken down in the Unified Process.
This is to indicate that elements of each discipline may take place earlier than the
core parts of the discipline. In particular, the design, implementation and testing
of the architecture will happen early on (in the Elaboration phase). Thus, part of
each of the Design, Implementation and Test disciplines must occur at this time.

The focus of each discipline is described below (their primary products are
illustrated in Figure 11.7).

Requirements. This discipline focuses on the activities that allow the functional
and non-functional requirements of the system to be identified. The primary
product of this discipline is the use-case model.

Analysis. The aim of this discipline is to restructure the requirements identified
in the requirements discipline in terms of the software to be built rather than
in the users less precise terms. It can be seen as a first cut at a design; however,
that is to miss the point of what this discipline aims to achieve.

Design. The design discipline produces the detailed design that will be imple-
mented in the next discipline.

Implementation. This discipline represents the coding of the design in an appro-
priate programming language (for this book that is Java), the compilation,
packaging, deployment and documentation of the software.

Test. The test discipline describes the activities to be carried out to test the software
to ensure that it meets the users requirements, that it is reliable, etc.

11 · Agile Methods with RUP and PRINCE2 201

Requirements

AnalysisDesign

Implementation
& Test

Inception

Elaboration

Construction

Transition

Key

Fig. 11.8 The Unified Process is a spiral.

Note that all the disciplines have a period when they are running concurrently.
This does not mean that one person is necessarily working on all the disciplines at
the same time. Instead, it acknowledges that in order to clarify some requirement,
it may be necessary to design how that requirement might be implemented and
even implement it to confirm that it is feasible.

In actual fact, this acknowledges that the Unified Process is a spiral (as indicated
by its iterative and incremental nature). This is illustrated in Figure 11.8 (note as
a phase moves around the spiral multiple iterations may occur; we have assumed
only one iteration in this figure for simplicity sake). As can be seen from this dia-
gram, the five disciplines are involved in each of the four phases. Each phases moves
around the various disciplines producing outputs that feed into the next phase.
Each phase examines the requirements (to a greater or lesser extent). Each phase
involves the analysis discipline, the design discipline and so on. This is in fact one
of the Unified Process’ greatest strengths, it represents a practical iterative design
method, which is held together by an architecture and which acknowledges risk
Unified Process front and makes it one of the driving elements of the whole design
process. It then ensures that what is being produced will be relevant to users of
the system by holding everything together via use-cases. Indeed, it is the use-cases
that help a designer identify what should be performed in any particular iterative.

11.2.4 Modelling and the Unified Process

Unfortunately (or may be fortunately), the Unified Process does not describe a
modelling methodology as such. Thus, you are free to employ your own approach
to modelling.

Let us first review a few important points about the Unified Process. First, it
is a framework that encourages you to adapt it to your own needs. In particular,

202 Agile Software Construction

Business modelling

Planning

Requirements

Analysis & Design

Implementation

Test

Deployment

Evaluation

Initial
Planning Configuration &

Change Management

Environment

Fig. 11.9 The Unified Process iterative and incremental.

you should not slavishly produce the deliverables from all disciplines unless they
are actually useful.

Secondly, the Unified Process actively encourages an iterative and incremental
approach to software development (as illustrated in Figure 11.9). Indeed, it is one
of the key elements of Unified Process. However, this can be lost in the detail when
organizations implement the Unified Process themselves. In particular, it is easy
to end up with an approach that promotes each discipline as part of a waterfall-
based methodology (partly this is because such an approach is more familiar to
those who try to move to the Unified Process and thus an easier fit with what
they already know). However, as illustrated in earlier chapters of this book, the
incremental and iterative aspects can easily be emphasised instead.

Thirdly, there is nothing in the Unified Process that assumes that all the mod-
elling must be done upfront. Indeed, if you adopt an incremental and iterative style,
then each iteration will generate its own set of models. Some of these models may
replace existing ones, others may augment them and some may be completely new.

This brings us nicely onto the role of Agile Modelling within the Unified Process.
There is very little in the Unified Process that actually describes how you should
model. In this book, we have examined how to identify the elements of a model,
how to refine those elements and what the elements are (for each type of model).
However, we have not, until now, discussed how you go about building up a large
model for a complex software system. Such a model may encompass years of
person time, client and server architectures and technologies, multiple editions
of the software, etc.

The Unified Process contains nothing that explicitly or implicitly prohibits the
use of Agile Modelling (and remember Agile Modelling is more a philosophy
than an actual method). Indeed, there is much in the Unified Process that actively
promotes a style of development that naturally encourages an Agile Modelling
approach.

11 · Agile Methods with RUP and PRINCE2 203

However, it is too simplistic to suggest that all you need to do is to plug Agile
Modelling into the Unified Process. The following lists some of the adaptations
you should consider to the Unified Process to promote the integration of Agile
Modelling:

� You may need to lower the emphasis on “use-case driven,” although the style
is still model-centric and still iterative, it is harder to determine all use-cases
upfront and agile model is less use-case focussed.

� Use-cases should be used to help identify the core of the architecture and
potentially the elements of the first iteration. The use-cases form the basis of
your starting point (but are a subset of all the potential use-cases that could
have been identified).

� Subsequent iterations need to identify their own use-cases (or requirements)
that will help to focus and drive that iteration.

� Treat the architecture as the key to enabling the integration of the results of
Agile Modelling, but be careful not to try to design in all eventualities and
“what ifs” – you may never need them and the architecture may have evolved
by the time you do, so that they are obsolete.

� The architecture is still the key to the infrastructure, but now Agile Modelling
works within the spaces left by the architecture.

� Don’t go over the top with the architecture. In particular, select appropriate
models and views as necessary for your projects requirements.

� Don’t go over the top with design patterns! They can be very useful but you
need to know where and when to apply them and they can make software
more complicated.

� The architecture is more interested in the contracts between areas than with
a fixed skeleton of code (this skeleton itself may be subject to incremental
and iterative modelling and implementation).

� The architecture itself can be modelled in an agile manner. That is, the
architecture is not fixed, it may well change and evolve, but this change will
be controlled and will be effected in an agile manner (only those areas that
need to change should change). Other aspects of the “architecture” may not
be fleshed out (or even designed) until they are actually needed.

� The iterations and increments are more than likely to be smaller rather than
larger. That is, each increment may represent a sub release of a software
system (say from 1.4.1 to 1.4.2) rather than a full release of a software system
(from say 1.4 to 1.5).

The key philosophy underlying the above is to try and only do what you need
to do in terms of modelling for each iteration in the Unified Process and that
Agile Modelling can help you to do that. Of course, this is where experience is
so important. That is, knowing what must be done upfront and what can be
left until later is not a hard and fast science. For example, security in a web
application is a very code case. Trying to factor this into an existing system may
require major redesign of the whole system. So, although security may not be an
important criterion for initial builds, it might be good to design it into the initial
architecture. This of course does conflict somewhat with what the agile movement

204 Agile Software Construction

states you should do, but you certainly don’t want to engineer in a design that
might actually stop security features being added later.

11.2.5 Agile Modelling and Documentation

It is important to realise that adopting an agile modelling approach to your
modelling task does not mean that you do not need to produce documentation.
Rather documentation encompasses the models you create just as it would
have done before. The issue is that you only create just enough models (and by
implication documentation actually) to support the tasks required. For example,
in general, the documentation you need while creating a software system is
different from the documentation you need once that system is built and you
need to support it. On a recent project, for example, we were taking a system we
had built previously for a client and adding a set of new features and a new class of
information to be managed. One of the documents written earlier described how
the existing architecture and classes would need to be revised and refactored for
the new requirements. This document was of great use during development but
was obsolete at the end of the project. What was needed now was a documentation
to support future maintenance of the system – not a document describing how
to migrate from a previous (and now historical) version of the system.

To conclude this section, agile models and their associated documentation are
“lean and mean” and fulfil a specific purpose. They are intended to be good enough
for those who should be expected to read them.

11.3 FDD and RUP

Agile Modelling is not the only agile methodology that can be usefully applied
to a software project that is employing the Unified Process. Feature-Driven De-
velopment (discussed in the last two chapters) is another method with things to
offer an RUP project.

One area in which we have found it beneficial to amend the Unified Process
is to make it also Feature-Centric (Coadet al., 1999; Carmichael and Swainston-
Rainford, 2000; Carmichael and Haywood, 2002). Feature-centric means that
each iteration centres on the identification and realization of system features. A
feature is a schedulable requirement associated with the activity used to realize
it. These requirements may be user-related requirements, application behaviour
requirements or internal requirements. The features can then be grouped into
workpackages that can act as the basis of the planning required to monitor and
manage the software development process.

Another aspect that I have found again and again can be applied to the Unified
Process from Feature-Driven Development is the application of fixed timescale
iterations. Clients like to know when they will get the next release. This means that
they can plan their own acceptance testing, deployment and training schedules.

11 · Agile Methods with RUP and PRINCE2 205

Associated with the concept of fixed timescale iterations, we have found that
clients are very willing to consider the priorities of features and to order them.
This means that if we find that an iteration will be unable to implement all the
features originally planned for that iteration, we are able to work with them to
determine which features will move to the next iteration or be returned to the list
of features that will one day be required.

In fact, what we have tended to do is to a wrap up a Feature-Driven Develop-
ment project within the outer wrappings of a Unified Process project. This means
that the Unified Process gives support for early project initiation activities, high-
level management support and ongoing software support operations. In turn, the
Feature-Driven Development aspects allow us to focus on the primary task of the
project, providing software that adds value to the clients within the timescales and
budgets available.

For example, earlier it was stated that the iterative approach within the Uni-
fied Process essentially has the following steps (which actually look remarkably
oriented towards the agile movement anyway):

1. You plan a little.
2. You specify, design and implement a little.
3. You integrate, test and run.
4. You obtain feedback before next iteration.

The Feature-Driven Development process therefore essentially handles these steps.
This is illustrated in Figure 11.10 where the design, implementation and test
disciplines have been subsumed by the Feature-Driven Development process.
Thus, we do not have a big up-front design, followed (possibly in parallel) by
the implementation and then the testing. Rather we have iterations comprising
planning, design, implementation and testing in an incremental and iterative
fashion. Indeed, the typical approach is to have multiple tasks during which a
bit of design, implementation and testing occur. To indicate that the iterations
managed by the FDD process may be of different sizes, the boxes being subsumed
by the FDD process are presented in different sizes.

It is worth refreshing why Feature-Driven Development is very useful for adap-
tive, incremental software development projects. It helps you to regain control of
the software development process. Part of this is the use of feature-centric plan-
ning, part of it is the use of timeboxing within each iteration, and the final aspect
is being adaptive. These three things make Feature-Driven Development bring
real added value to the Unified Process.

11.4 Agile Methods and Prince2

The PRINCE2 method describes how a project is divided into manageable stages
enabling efficient control of resources and regular progress monitoring through-
out the project. The various roles and responsibilities for managing a project are
fully described and are adaptable to suit the size and complexity of the project, and

206 Agile Software Construction

R
eq

ui
re

m
en

ts

A
na

ly
si

s

D
es

ig
n

Im
pl

em
en

ta
tio

n

T
es

t

In
ce

pt
io

n

E
la

bo
ra

tio
n

C
on

st
ru

ct
io

n

T
ra

ns
iti

on

time
F

D
D

Fi
g

.1
1

.1
0

In
te

g
ra

ti
n

g
Fe

at
u

re
-D

ri
ve

n
D

ev
el

o
p

m
en

t
w

it
h

th
e

U
n

ifi
ed

Pr
o

ce
ss

.

11 · Agile Methods with RUP and PRINCE2 207

the skills of the organisation. Project planning using PRINCE2 is product-based,
which means the project plans are focused on delivering results and are not simply
about planning when the various activities on the project will be done.

Because an iterative or incremental approach may at first sight appear less
controlled than an approach such as PRINCE2, some have perceived that this
means that PRINCE2 and such approaches are inconsistent. However, this is
not the case. Indeed, if you consider the emphasis of the Feature-Driven ap-
proach, then similarities with some aspects of PRINCE2 can immediately be seen.
For example, product (or feature)-based planning, the involved partnership of
users and developers and the strong emphasis on the underlying business need
(or case).

Care is needed, however, in using the two methodologies together. Those who
have used PRINCE2 to control their Feature-Driven, timeboxed project have
found that an unyielding approach – applying the method straight from the
manual – can lead to duplication, overlap and conflict.

Table 11.1 makes it clear that the iterative approach includes some project
management content while in turn PRINCE2 maintains a view of the whole
project (whereas the iterative approach plans out each iteration at the start of
that iteration). In addition, the iterative approach fixes the length of an iteration
in terms of time and then attempts to achieve a prioritised list of features. Some
features may not be implemented in the time available and will “return to the pot”
for the next iteration.

The general philosophy to combining a PRINCE2 approach with an iterative
one is that where there is no overlap between the methods, you must refer to the
appropriate approach. In general, this means that project management related
issues will be handled by PRINCE2 and development related issues by the iterative
approach.

What does this mean? For example, PRINCE2 does not require management
stages to match technical ones. A management stage may consist of a number of
timeboxes. Thus, a phase may or may not map to an iteration. If it does, then fine.
The first task in an iteration is then to determine the exact set of features to be
addressed. However, the general set of features to be addressed during the phase
should have been identified (although in the end not all may be implemented).

In terms of roles, the internal project manager might be the Team Manager
PRINCE2 role. PRINCE2 assigns project assurance functions to the Project Board
members, and each member fulfils this role from his or her own perspective. The

Table 11.1 PRINCE2 and FDD relationships.

PRINCE2 Iterative/Feature-Driven Design

Organisation Project board and assurance Project manager
Project structure Stages Timeboxed increments/iterations based on features
Outputs Management products Iterative releases
Quality Quality plan Test specification, plan and report per iteration
Flexibility/change Time, cost Features
Control Issue management Timeboxing, feature selection and management

208 Agile Software Construction

Project Board may delegate project assurance responsibilities to an independent
Project Assurance Team (which may have been set up to carry out project assurance
for any or all projects). In an iterative approach such as that advocated in this
appendix, the Project Assurance Team may be redundant because of the far closer
relationship and involvement of the business and the users in selecting the features
to be addressed, the visibility of the progress within an iteration and from the
deliverables of an iteration. Each iteration is carried out to a fixed timescale with a
fixed budget and decisions are always based on the business benefit of the features
being addressed.

Products produced as part of the PRINCE2 process are management and quality
products. They relate to the effective and efficient management and control of the
project and to project quality, respectively. Most products within the Feature-
Driven approach are specialist products, that is, they are either descriptions of
features, or descriptions of how the system operates with these features (use-case
documents), or the techniques to be used. There are, however, some products
that are either completely management products or contain project management
sections (such as the outline plan for all iterations, and the detailed iteration plan)
and some quality products (such as the Test specification, test plan and test report
for a particular iteration).

To avoid duplication of effort, the recommended approach is that high-level
management and quality products should be the province of PRINCE2 and that
detailed iteration planning and quality monitoring should be the province of the
iterative approach.

Managing and controlling an iterative project using PRINCE2 is fundamentally
the same as for any other PRINCE2 project. The purpose is to enable each level
of the project management team to:

� Demonstrate to the next level up that the project is on track to a success-
ful outcome (that the project will deliver products that are fit for business
purpose on time and within budget).

� Identify early anything that may prevent this.

To do this, there are mechanisms for controlling and tracking both the PRINCE2
aspects (project management) and the products of an iteration (frequent reporting
of the progress of features). In PRINCE2, management and control are done at
each project stage and everything depends on how the project is broken up into
stages. PRINCE2 defines major control points through the life of the project, as
follows:

� Project initiation,
� End stage assessment,
� Regular highlight reports,
� Exception reports,
� Mid-stage assessment,
� Project closure.

The results from each iteration can feedback into the monitoring and reporting
stages of PRINCE2.

11 · Agile Methods with RUP and PRINCE2 209

11.5 Summary

In this chapter, you have seen that just because a method does not declare itself
to be part of the agile movement (although many are now trying to jump on
that bandwagon) does not mean that agile practices cannot be introduced or that
agile concepts cannot be of benefit. Indeed, the RUP can greatly benefit from
many of the practices defined for agile modelling. It helps to reduce the big up-
front design syndrome that can blight RUP projects. It also helps to control the
amount of documentation/models produced and the frequency with which they
are revised. In turn, methods such as the RUP provide a welcome structure for (in
particular) larger software projects that can be rather too unwieldy to managing
in a purely XP manner.

The end result of combining agile methods with processes such as RUP is some-
thing that (if handled appropriately) can provide the overall management often
required by large long-lived projects with the agility and responsiveness required
in the modern development world. From real world experience, I have applied a
combination of the Unified Process, with Feature-Driven Development and agile
modelling with aspects of XP to software development projects. Admittedly, the
end result is not an XP project, nor is it a purely Feature-Driven Development
project, but it has worked, produced tangible results on time and within budget
and has fitted in with our clients’ needs and requirements – what more can be
asked!

12
Introducing Agile Methods

into Your Organisation

12.1 Introduction

Okay, so if you have got as far as this in the book, it is likely that you are quite keen
to implement an agile approach. However, you must now persuade people within
your own organisation that they should consider doing this. This may be no mean
feat in its own right. To help you, this chapter discusses how you might approach
the process of persuading an organisation that they should consider applying agile
practices.

12.2 Selling Agile Methods

If you want to introduce agile methods into your organisation, you have to sell
the concept of agility to that organisation. It is possible that you may be in the
privileged position of being the decision maker regarding the software develop-
ment approach to take (although in general that will be unlikely). However, even
if you are the decision maker you need to get others “on side” in order to make
it work. Of course, if you are merely someone who is trying to influence the
decision makers, then you have an even bigger need to “sell” the idea of agile
methods.

Although programmers think in terms of code and requirements and design,
companies (or at least the groupings that represent companies such as senior
management, etc.) tend to think in non-programming terms. Thus, if you want
to sell agile methods, you need to focus on the results that can be obtained from
being agile rather than the methods that are embodied within the agile movement.
This may also be true as the methods themselves may make risk-averse managers
think more than twice about the approach.

Thus, in selling agile methods to an organisation, you need to avoid discussions
regarding techniques (and often in particular about eXtreme Programming as this
may conjure up all the wrong connotations for managers – extreme hackers!) and
sell the results that can be obtained. From their perspective, the results can include:

211

212 Agile Software Construction

1. Software can be developed on time, within budget and be of real use to the
end users.

2. This gives the organisation, the customer and the team a competitive advan-
tage.

How many end users have complained that the software they got was late, over
their budget and didn’t do what they wanted (possibly because they didn’t tell the
developers what they really wanted but none the less . . .).

Agile methods really do help “get the right software right!” That means, clients
will keep coming back, new clients will be won and the business should boom!
(at least from the organisation management’s point of view).

There are growing case studies that have been reported to back these claims up
(see the Agile Universe Conferences and the Agile Movement Website). However,
you will still need to convince management that these advantages can be won
within your own organisation. In many cases, this means proving it with a project
of your own. As management wants to avoid unnecessary risks, it makes sense to
propose a small project run in an agile manner as a test case.

Finally, if you are not a primary decision maker within your organisation, then
you need to get someone who is on your side. That someone needs to be your Agile
Methods Champion – someone who will fight for your cause at the right level of
seniority within your organisation. Without that person, in many organisations,
you are doomed to failure before you even start.

12.3 Identifying a Suitable First Project

This raises the question – what is a suitable first project? You need to pick an
appropriate project. This project needs to be one that will show off the bene-
fits of an agile approach, by that I mean that if the project could be success-
fully implemented with your current processes, then where is the advantage to
be found? However, it must also not be so challenging that the project is likely
to fail given the timescales, budgets and resources available, whatever methods
were used. If this is the case, the agile approach adopted may well be blamed
for the failure when it was actually the project itself that failed. Of course, a
counter argument to this might be that agile methods should be able to de-
liver something – and that is true, but this is the first agile project to be done
within the organisation and experience has yet to be gained – so let’s be fair for a
minute!

The questions, therefore to ask about a project, to consider whether it is a
suitable candidate to be a first agile project, include the need to assess the risk,
client, nature and size of the project. We will consider each below.

Firstly, the level of risk attached to the project should not be too high. That
is, overall the project should not be so risky as to make it almost a failure before
you start. However, in addition, it should not be so risk-free as to be mundane
and completely predictable (as you are therefore less likely to need to be agile).
Another feature of risk is that it should not be too risky for the company (or
indeed client). That is, it should not be a business critical project that if it fails will

12 · Introducing Agile Methods into Your Organisation 213

cripple the organisation or the client. Remember, this is your first agile project
and it may well go horribly wrong!

Secondly, the client for the project needs to be “on board” with regard to
adopting an agile approach. Remember, within any agile method, the involvement
of the client is not only essential but also a crucial part of the constitution of the
team. Without the on-site client you may very well wander from what they need,
be unable to answer important questions and fail to produce what they require.
Even if the client is on board they can make an on-site customer representative
available to you (even if this is in a virtual manner). If not, then as willing as they
may seem that are unwilling to commit fully to your endeavour.

Thirdly, the nature of the project must be suitable. If this is a green field software
solution, within which some of the requirements are at best liable to change and
at worst still unclear, then you may well be onto a major winner. As agile methods
explicitly acknowledge these features, you will be able to show how you can respond
to these changing requirements using an agile approach.

Finally, the project need not be too large. Ideally, a team of three or four
dedicated and talented software engineers should be able to accomplish the task
in hand within 3–6 months. Anything larger and it is likely that it is too big
for a first project. Anything smaller and you don’t have enough time or people
to really get to grips with agile methods. Of course, you need to get the right
people in the team, who are not only talented but also willing to adopt an agile
approach.

12.4 Promoting an Agile Culture

You will need to promote an agile environment at least within your project if not
wider a field within your organisation. You need to ensure that everyone involved
with the project is working in an agile manner. It is of little good to you if your
immediate team works in an agile manner, but when you try to book some system
support time (for example, to help set up an appropriate test environment) you
find that you have to book this 8 weeks in advance and they can’t do anything
for you right now. This is particularly true if you are working on a 2- or 3-week
release cycle!

So, what can you do to nurture a culture of agility? Firstly, start small – with
a small project, a small team and small(ish) aims. Ensure that everyone is fa-
miliar with the aims and objectives of the agile movement. However, you can’t
be too rigid in your application of your chosen agile method – you need to in-
troduce it gradually. Also don’t worry too much about “getting it right;” your
understanding of how to apply the principles within a particular approach will
evolve. So, let the project become more agile as your understanding and experience
grow.

Finally, drive home the fact that it’s the software to be developed which is the
primary goal of all these and that what the customer wants comes first. This may
sound obvious but as has been indicated earlier in this book, this can be hard to
achieve. You will also need to fight to ensure that the customer is involved, remains
involved and remains interested!

214 Agile Software Construction

12.5 Building an Agile Team

If you are able to select the software engineers who will comprise your team,
then you are very lucky and have a big advantage. You need to try to get the
best software engineers you can (don’t we all?) but in this case you really need
to ensure that it is not their technical ability that causes the project problems (as
they will have enough to do learning about being agile!). Note that I have used
the term “Software Engineers” here and not programmers. The reason for this is
that you need to get people who can see the bigger picture, who can deal with
clients directly, can analyse requirements, carry out agile modelling, implement
solutions and test them. Developers who only consider themselves as programmers
will have too big a learning curve to climb in the short time available for the first
project!

However, you need more from your first team. They need to be team players –
people who can literally work in a team. They need to be able to communicate
(sometimes tricky test for developers) as they will need to understand, share and
explore the new agile methods. They will also need to be able to work together in
small groups analysing, modelling, designing and implementing the solution.

Which brings us nicely to another point; they need to be practical. That is, they
need to be good at identifying a problem and finding a solution – they need to be
doers. Remember, you have only a small team and a short time available. So, you
can’t carry anyone.

Ideally, the software engineers also need to be interested in new techniques
and willing, in particular, to try out an agile approach. That is, they need to be
open-minded and not enter the process refusing to adopt agile methods. This does
not mean that they have to agree to all that a particular agile method proposes
without question, but that they will adhere to it for the current project period. Of
course, post project, having them question what was done, why and how it may
be improved, can be extremely useful.

12.6 Adopting Agile Processes One at a Time

Adopting an agile method takes time. You can jump-in and try everything at once
but it makes life a little less stressful if you adopt the practices of your chosen
approach one at a time. This helps your team to gain experience in the effects of
a particular principle. It also helps with concerns that the organisation may have
with regard to agile methods, such as lack of investment in upfront analysis and
design, as well as a reduced emphasis on documentation.

By adopting one principle at a time, elements close to the heart of the organ-
isation can be left in place. A good place to start, is in the adoption of the XP
approach to unit testing. Personally, I have found that this approach to testing
is useful whatever may be the project, whether it is agile or not! By adopting an
agile approach to testing (i.e., by introducing testing frameworks such as JUnit
and exploiting ideas such as test first implementation, etc.) this helps to develop
a different developer mindset and also paves way for refactoring, encourages

12 · Introducing Agile Methods into Your Organisation 215

immediate feedback to changes in the system and helps highlight differences be-
tween the development and production environments.

Of course, it takes time to learn how to do effective unit testing and particularly
how to design the test first. But, if this is the first practice being adopted, then it
makes life less hard. Developers may well get carried away with defining tests that
can result in a large number of essentially duplicated tests. These can be identified,
as developers may notice similar tests in different parts of the system or as they
read tests to understand codes. This is normal and can be “refactored” out of the
tests as the project progresses.

Which practice is adopted next tends to depend on which approach you are
working with. For example, I tend to look at introducing modelling practices next
based on Agile Modelling. With the intention of letting people get familiar with,
and learn about modelling in pairs or in small teams for short specific purposes.
However, if you are adopting a primarily XP approach, then you might select to
introduce the refactoring practice next.

In isolation, a single refactoring operation is often quite simple to do and to
test. However, producing larger scale effective refactoring operations can be a
lot harder. In addition, within XP, the aim is to refactor whenever a situation
warrants it. Getting used to this and actually doing it in the right way (including
ensuring you understand what the code needs to do before changing it and testing
it thoroughly) takes time to get used to. In general, in software development, we
tend to adopt a “if it is not broken, don’t mend it policy” which can at first seem to
be at odds with refactoring. However, refactoring should be applied when the code
is broken with respect to one or more of the requirements or XP practices (such
as simplicity). Of course, adopting refactoring implies that you have adopted unit
testing fully, as this is the only way in which you can guarantee that the software
still provides the same functionality as it previously did.

You can also adopt the concept of “Keeping things as simple as possible”
(or at least as simple as is required to serve their purpose). Everyone can agree
to this practice (i.e., no one should over-complicate software) but of course the
temptation to factor-in implementation details that may be required in the future
can be difficult to resist. Thus, the team needs to learn to avoid adding-in code for
future requirements (this is where the test first implementation can really help).
It is also necessary to be careful of design patterns. Although they are very useful,
they can make the software more complex than it needs to be. It is better often to
factor-in design patterns as and when needed.

12.7 Managing Existing Processes

One big issue that can be encountered when introducing agile methods is that of
existing heavyweight processes and the process owners. In many cases, “it must be
done using this method because we have ISO900X and it says we use this method,”
etc. can be a difficult organisational hurdle. Your only option here (unless you are
given dispensation to ignore the process) is to try to work with the process owner.
See if they can identify any problem areas they currently have and discuss how an
agile method might help. If they are willing to try to see how an agile approach

216 Agile Software Construction

might address their problems, then you can start to introduce agile practices a bit
at a time (in order to solve perceived problems).

12.8 Working with Distributed Teams

Physically distributed teams do not exactly fit with agile processes. If your team
is distributed (even within a building, let alone between different physical sites),
then ideally you want to collocate them. If you cannot do that, then you may be
able to use collaborative tools to help you get around the problems. However,
you will also need to choose a process into which you place the agile methods
which support distributed teams. You might also consider marking some people
as mobile. That is, they move between the physical locations of the project team
to improve communications, etc.

12.9 Get Some Experience

Finally, there is nothing as good as having someone around who has done it before.
Someone who can say “ah, but if you do that. . . .” This can be obtained either by
moving someone into the team who has worked on agile software development
projects or by hiring someone (on either a permanent or temporary basis) for the
duration of the project.

13
Tools to Help with Agile Development

13.1 Introduction

As with many things in life, the right set of tools can make a huge difference to an
agile development project. There are a number of tasks that can be made much
easier and simpler by employing the correct supporting tools. In this chapter, we
will look at some of the tools available and how they can be used. All the tools
we will look at are open-source and freely available. This is not to say that only
open-source tools can be of help, merely that these tools do not cost anything to
obtain and therefore the initial up-front costs involved are minimal. This means
that if you wish to experiment with an agile project and want some tools to help
you do that you should have little trouble obtaining them. In some of the cases,
they are also commercial tools that can be used instead and depending upon your
environment you may decide to/need to use those instead. Personally, I have found
these open-source tools more than adequate.

13.2 What Tools Do You Need?

So what tools should you use in support of an agile project? To answer this question,
let us first consider what tool requirements Agile Software Development imposes
on us. Some of these requirements are presented below:

1. We should be able to refactor software simply and easily. For example, in Java if
we move a class from one package to another we would want package statement
of classes to be updated and all references to that class to be modified, etc.

2. It should be possible to modify existing software securely in the knowledge
that we can role back to an earlier version if it all goes horribly wrong.

3. We should be able to track changes in the system.
4. We should be able to run and re-run test suites simply and to review the results

easily and immediately.
5. If we are undertaking to perform Agile Modelling, then we should be able to

reverse engineer code into models simply and with a minimum of fuss. We
should be able to modify code or models and keep both in sync. We should
be able to update models without the need to heavy weight tools.

217

218 Agile Software Construction

6. Ideally, we also want something that will tell us when we need to create a new
build. For example, something that notices that new code has been released
into the central repository and initiates the build process automatically.

The tools listed below are those that I have found to be particularly useful in the
projects I have worked on. They represent the most common areas that can benefit
from tool support within an agile Java development project:

1. An IDE that can be integrated with the other tools proposed, which supports
refactoring and iterative development.

2. A lightweight modelling tool to help with Agile Modelling.
3. A build tool to allow simple and rapid rebuilds of the system as and when

necessary.
4. A version control system to handle the frequent and rapid changes introduced

into the software and to allow the software to roll back when necessary.
5. A test framework to handle the unit tests so important to agile software de-

velopment.

You do not need any of the above of course. It is quite possible to use Vi, Emacs
or NotePad to edit your programs and to manage or maintain builds, versions
of software, test suites, etc., without any additional tools – but it does make life
easier!

In the remainder of this chapter, we will consider the following tools:

1. The Eclipse IDE (into which all the remaining tools can be plugged),
2. Omondos’ modelling plug-in for Eclipse,
3. ANT: the build tool for Java,
4. The CVS version control system,
5. The JUnit Java test framework.

Of course, these are not the only tools available, there are other open-source
tools (most notably tools such as NetBeans for Java and CSharp Stuido for C#),
low-cost tools (such as JCreator) and fully commercial tools such as JBuilder and
VisualStudio. In general, the commercial tools are the most sophisticated and
require the least effort to set up/configure and use (although this is not always
the case). The point is that you will greatly benefit from using an appropriate set
of tools and using free ones to at least get you started can be a great advantage.
Personally, these open-source tools meet most, if not all, of my requirements on
almost all projects.

13.3 Eclipse: An Agile IDE

Eclipse is an extremely powerful open-source IDE that can be used for developing
projects in a variety of languages. It is primarily known as a Java IDE and in this
guise it offers facilities on a par with commercial tools within an open-source

13 · Tools to Help with Agile Development 219

framework. It can also be used for developing C, C++ and C# applications – thus,
offering a common IDE for a variety of development languages.

Eclipse was originally developed by IBM but was moved to an open-source
model to widen its appeal and the base of developers working on it. Not only is
it an open-source system but it is also an open platform that allows additional
tools to be plugged into it to extend its basic functionality. The Omondo UML
diagramming tool described later in this chapter is one such plug-in.

An example of using Eclipse to develop Java code is presented in Figure 13.1.
Note that Eclipse colour codes Java, and can be configured to insert default tem-
plates for Java classes and interfaces. An example of part of a Main class, containing
a main method, is displayed.

As an IDE, Eclipse offers the standard suite of features we expect, including:

� Syntax analysis of code as it is entered
� Integrated context-sensitive help system
� Auto-complete
� Pop-up function/procedure prototypes
� View source of supplied components
� Ability to run applications from within the tool
� Integrated debugger
� Variety of wizards for creating different types of Java element
� Integration with version control systems (for example, CVS)

Fig. 13.1 The Eclipse IDE – Java Mode.

220 Agile Software Construction

� Sophisticated, context-sensitive, search
� Various perspectives (including code, class, inheritance, etc.)
� Integration with Java development tools such as ANT, Junit, etc.

Eclipse is also fast, lightweight and relatively small. It is written in Java and is thus
cross platform (allowing developers on a variety of platforms to all use the same
IDE).

From the point of view of an agile development approach, one of the best
features of Eclipse is its support for various refactoring operations. It is possible
to refactor the location of packages, classes and interfaces, to refactor class and
interface names, methods, variables and constants. In many cases, Eclipse provides
a refactoring wizard that will automatically perform much of the mundane work
associated with refactoring. For example, if a developer refactors a method name,
Eclipse will search for all references to that method name and will change those
references to the new name. It will also search through any Javadoc referencing
the method and make changes within the Javadoc comments. It can also search
through non-Java files and make changes as required. This is particularly useful
for XML files that are used to configure J2EE applications and which may reference
Java classes, interfaces and their methods.

An example of the refactoring options available to a developer is illustrated
in Figure 13.2. In this example, the user has selected a particular interface and
brought up the right mouse menu. On this menu is an option to “Refactor.” This

Fig. 13.2 Selecting to refactor a class name.

13 · Tools to Help with Agile Development 221

Fig. 13.3 Class/Interface rename dialogue.

results in a more detailed menu being displayed. In this case, the user has selected
to rename the interface. The resulting class/interface name change dialogue is
displayed in Figure 13.3. Note that this dialogue not only allows the user to enter
the new name of the interface but also to select where Eclipse will look to make
changes.

13.4 Lightweight Modelling within Eclipse

Within an agile project, we want lightweight tools that aid the development pro-
cess, rather than impede it. Modelling tools, all too often, feel like that are just
such an impediment. They can often feel “clunky” and awkward to use and cause
problems if and when code is generated from them or reverse engineered into
them.

Within an agile context (and particularly within an Agile Modelling context),
what is required is a modelling environment that is natural to use and as lightweight
as the code editor within the IDE being used. Both Eclipse and JBuilder include
such modelling environments. As we are focussing on Eclipse, this is the environ-
ment we will consider.

As it comes “out of the box,” Eclipse does not include a modelling environment.
However, it is an open platform that encourages the development of plug-ins for
various tasks. Thus, modelling tools have been developed that can be plugged into
Eclipse to support round trip modelling. One example of such a tool is Omondo.

222 Agile Software Construction

Omondo have developed EclipseUML. This is a visual modelling tool, which is
fully integrated with Eclipse. Two versions are available: a free version which is
suitable for single-user developments and allows evaluation of EclipseUML and
a commercial version which extends the basic version to support team-based
developments and version control systems such as CVS. The team-based version
is capable of managing hundreds of simultaneous connections and so is adapted
for large software development teams.

EclipseUML has support for live bi-directional (byte-code) model and code
synchronisation. Thus, as a change is made to the code, it is made to the model.
In turn, any changes made to the models are reflected in the source code under-
lying the model. Thus, the effort of creating a model is counter balanced by the
immediate availability of the source code for that model. An example of a model
generated from Java source code is presented in Figure 13.4.

A modelling tool such as EclipseUML is ideal for an agile project as models
can be generated as required from source code, models are automatically kept in
sync with the source code and changes to models are immediately reflected in
the source code (with no additional actions required). Thus, the emphasis is on
creating the source code rather than building models for the sake of modelling. It
also encourages a move to the source code earlier as the source code is immediately
available at all times.

Fig. 13.4 EclipseUML modelling tool from Omondo.

13 · Tools to Help with Agile Development 223

13.5 Building Applications with ANT

ANT is the Java build tool; it is make (plus much more) for Java. It allows a
developer to specify what components need to be built, when and into what
format.

Every quality IDE, from the open-source projects (Emacs, NetBeans, Eclipse,
Jedit) to the commercial offerings such as IntelliJ IDEA and JBuilder now have
high-quality ANT integration either built-in or available as a download. Indeed,
it is getting to the point within the Java world where many Java developers expect
to be able to use ANT as a basic part of their development environment. Indeed,
in many cases, if you download an open-source project, you will find an ANT
script has been provided to allow you to build that project.

However, there are still many organisations and situations in which Java de-
velopers are unaware of ANT and what it can do. In this section, we will outline
what it can do and highlight its integration with the Eclipse tool.

Using ANT, it is possible to:

� Extract all the current source from a version control system such as CVS.
� Compile all the Java code in a system.
� Automatically generate a build number, provide a build date stamp, add a

version number to a property file, etc.
� Jar that code up into a single file.
� Copy that jar to a deployment location.
� Generate the Javadoc for the compile system.
� Copy the Javadoc to an appropriate location.
� Create Web Archives (WARs).
� Create Enterprise Archives (EARs).
� Deploy WARs and WARs to servers (such as Tomcat or JBoss).
� Start up servers such as Tomcat and JBoss.

ANT is written in Java and uses XML configuration files to control its build process.
These build files, called “build.xml” by default, control what ANT does and how
it does it. Each build file contains one project and at least one (default) target. A
target describes an ANT activity such as the compilation of some Java code, or the
creation of a Jar file (or both). An example of a ANT build file for a simple project
is presented in Figure 13.5. This illustrates the basic ideas. The root element of the
build file is the “project” element. This element specifies the name of the project
and the default target (that is what should happen if the user merely types “ANT”
on the command line). It also indicates the base or default-working directory for
the ANT execution process.

The ANT build file example in Figure 13.5 also illustrates the definition of three
different targets. For example, it defines the target “compile.” This is the default
target run by the ANT process. This compile target updates a property file using
the property file element (this allows the current release status, version and date
to be added to the core.properties file). It then initiates the javac program using
the javac element specifying the source, destination and classpath attributes. Note

224 Agile Software Construction

Fig. 13.5 An ANT build.xml file in Eclipse.

that the source and classes attributes are defined by ANT properties. These are
similar to variables in a program and are set at the top of the build file.

It is also worth looking at the “build-all” target above the “compile” target. This
target allows the compile target and the jar target to be called one after another.
This illustrates ANT’s ability to have hierarchical targets. To run the “build-all”
target (or any of the non-default targets), ANT must be invoked with the name
of that target, for example:

ANT build-all

Eclipses’ ANT support allows ANT processes to be executed from within the
Eclipse tool. This allows you to create and run ANT build files from the Eclipse
Workbench. These ANT build files can operate on resources in the file system as
well as resources in the workspace.

You can interactively configure the ANT process, add ANT tasks, set ANT
properties, etc., from within Eclipse as illustrated in Figure 13.6.

Once a build file has been configured, it can be run from within Eclipse. To do
this, the build file is selected in the Navigator view and the right mouse button
used to initiate the “Run ANT” option. This displays the ANT dialogue presented
in Figure 13.7. This dialogue lists the targets available for the build file and allows
other data such as properties and the class path to be set.

Output from an ANT build file is displayed in the console view in the same
hierarchical format seen when running ANT from the command line. ANT tasks

13 · Tools to Help with Agile Development 225

Fig. 13.6 Setting up ANT within Eclipse.

Fig. 13.7 Starting an ANT build process within Eclipse.

226 Agile Software Construction

(for example, “[mkdir]”) are hyperlinked to the associated ANT build file, and
javac error reports are hyperlinked to the associated Java source file and line
number.

13.6 Version Control with CVS

CVS is the Concurrent Versions System, the dominant open-source network-
transparent version control system. CVS is useful for everyone from individual
developers to large, distributed teams:

� Its client–server access method let developers access the latest code from
anywhere if there is an Internet connection.

� Its unreserved check-out model to version control avoids artificial conflicts
common with the exclusive check-out model.

� Its client tools are available on most platforms.

CVS is used by popular open-source projects like Mozilla, the GIMP, XEmacs,
KDE and GNOME.

13.6.1 So What Is It All About?

That is all well and good, you might be saying, but what does it do for me? First,
the basics: A version control system keeps a history of the changes made to a set of
files. For a developer, that means being able to keep track of all the changes you’ve
made to a program during the entire time you’ve been developing it. Have you
ever lost a day’s work due to an errant keystroke at the command line? A version
control system gives you a safety net.

Version control systems are valuable for anyone, really. (After all, who couldn’t
use a safety net?) But they’re usually used by software development teams.
Developers working on a team need to be able to coordinate their individual
changes; a central version control system allows that.

13.6.2 Code Central Station

Individual developers who want the safety net of a version control system can run
one on their local machines. Development teams, however, need a central server so
that all members can access to serve as the repository for their code. In an office,
that’s no problem – just stick the repository on a server on the local network.
For open-source projects, it’s still no problem, thanks to the Internet. CVS has
built-in client–server access methods so that any developer who can connect to
the Internet can access files on a CVS server.

CVS maintains a history of a source tree, in terms of a series of changes. It stamps
each change with the time it was made and the user name of the person who made

13 · Tools to Help with Agile Development 227

it. Usually, the person provides a bit of text describing why they made the change
as well. Given that information, CVS can help developers answer questions like:

� Who made a given change?
� When did they make it?
� Why did they make it?
� What other changes did they make at the same time?

CVS available on a variety of platforms include Windows, Linux, Unix, VMS, Mac
OS, etc.

13.7 Testing with JUnit

Testing is a key aspect of an agile development approach. It is of course quite
possible to generate an appropriate set of unit tests without the use of any form of
support. However, the application of a standard testing framework has a number
of benefits. These include:

1. Standardised test format. This means that all developers use the same test
format, follow the same rules for creating tests, manage those tests in the
same way, etc. This allows tests to be easily understood by other developers as
well to allow for code and knowledge sharing.

2. Repeatable tests. Automated tests supported by a testing framework are more
repeatable than manual tests because they execute in exactly the same way
every time – no matter who the developer is. Typically, they are also easier
to initiate – there is no “so how do I run your tests again?” Finally, testing
frameworks can provide simple but effective reporting tools to allow the results
of tests to be easily and simply verified.

3. Tried and tested frameworks. The last thing we want is to have bugs in our
testing framework such that bugs in the tests hide potential problems in our
code. Using an established and well-tested framework can help to overcome
this.

4. Potential tool support. It would not be beyond the bounds of feasibility to
create my own testing framework and to use that on any software project I
undertook. However, this would not be a widely used framework and thus
would be unlikely to have direct support within any particular IDE. Using a
well-established testing framework, however, may allow such support to be
exploited within your chosen IDE.

JUnit is an example of a standardised, well-established testing framework. It was
written by Erich Gamma and Kent Beck and is modelled on the xUnit testing
framework (essentially, the J in JUnit indicates that it is a version of the xUnit
pattern for use with the Java language – other examples are the CUnit and CppUnit
versions for C and C++, respectively).

JUnit provides a simple way to explicitly define repeatable unit tests and test
suites. It is written in Java and so can be easily integrated into any Java development

228 Agile Software Construction

environment. It is also possible to integrate JUnit into ANT to automate regression
test suites.

JUnit comes with three different ways of running tests (referred to as TestRun-
ners) depending upon whether you wish to run a Swing, AWT or non-graphical
test runner:

� a textual TestRunner – it is the fastest to launch and can be used when you
don’t need graphical feedback on test results.

� graphical TestRunners – these provide graphical feedback on the results of
running the test and can be either Swing or AWT based.

One of the IDEs which provides direct support for JUnit is Eclipse. It provides a
set of wizards which greatly simplify writing JUnit tests and test suites. We will
look at this feature of Eclipse in subsequent subsections below.

13.7.1 JUnit within Eclipse

JUnit is now such an important feature of the Java development world that a
number of the IDEs available have included JUnit support. For example, Eclipse
includes direct support for JUnit. Of course, you do not need to use Eclipse to use
JUnit, but having direct support (including a number of JUnit wizards does make
life a whole lot easier). The key to Eclipses support for JUnit is the plug-in facility

Fig. 13.8 Adding the JUnit.jar file to an Eclipse project’s build path.

13 · Tools to Help with Agile Development 229

within Eclipse. This allows additional tools and wizards to be created for Eclipse
and “plugged in” to the IDE in a simple and standard way.

Support for JUnit can be found within the Eclipse plug-in architecture.

13.7.2 Adding JUnit to an Eclipse Project

Within Eclipse you need to add the JUnit jar to the project build path. This will
then allow the code generated by Eclipse for the JUnit tests to be compiled. It
will also add the junit.jar file to the runtime classpath for the project so that
any run configurations you create will automatically be able to access the JUnit
framework.

The junit.jar file is added to the Java build path in Eclipse 2.1 by opening up the
project properties and selecting to edit the Java build path. You can then select to
add an External Jar file to the build path. In Eclipse 2.1, you will find the junit.jar
file under the eclipse\plugins\org.junit∗ directory. By selecting the junit.jar file
and adding it to the Java build path you should end up with the dialogue presented
in Figure 13.8.

Fig. 13.9 A simple Java class to test.

230 Agile Software Construction

If you have successfully added the junit.jar file to your project build path, then
you are ready to start to use the JUnit plug-in wizard.

13.7.3 Using the Eclipse JUnit Wizard

To create a TestCase class using the JUnit framework, you can use the JUnit wizard
provided as part of the JUnit plug-in. Selecting to create a new class for a package
can do this. In the following example, I have created a simple class Person in a
package com.jaydeetee.util. This class is illustrated in Figure 13.9.

The Person class has two instance variables for name and age that are accessed
via setter and getter methods. It also provides a constructor which allows these
values to be initialised. Obviously, this is not a particularly complex class; however,
it is sufficient to illustrate the ideas being presented here.

We are now in a position to create a JUnit test case for the class Person. To
keep things simple, we will place the test class within the same package as the class
being tested (in reality you might well wish to place the test class within its own
test package hierarchy).

Fig. 13.10 Selecting to create a new JUnit TestCase using the Eclipse JUnit wizard.

13 · Tools to Help with Agile Development 231

To create the test class, we use select the “New” menu option from the pop-up
menu available off the package com.jaydeetee.util. This menu option allows new
classes, interfaces, etc., to be created. In this case, we select the new Java JUnit
option. This presents the dialogue presented in Figure 13.10, which allows the
user to select to create either an individual test case or a whole test suite. For the
moment, we will select to create a single test case.

The result of selecting to create a new JUnit TestCase is the dialogue presented
in Figure 13.11. Amongst other things, this dialogue allows us to define the name
of the test case (by convention we will call this test case after the name of the class
being tested followed by “TestCase,” thus this test case is called PersonTestCase).
It also allows the class being tested to be specified, i.e., Person. Additionally, it
allows the user to select how they wish to view the results of running the test case
(we have selected to use the Swing-based GUI to view the results). We have also
selected to generate setup() and teardown() methods. These can be used to set up
any test environment and remove the test environment (for example, these might
be used to set up some data in a database which will be used by the tests and then
to remove that data from the database).

Fig. 13.11 Setting up the PersonTestCase using the TestCase wizard.

Fig. 13.12 Selecting the methods to test on the class Person.

Fig. 13.13 The automatically generated PersonTestCase class.

13 · Tools to Help with Agile Development 233

Fig. 13.14 A simple test method.

Having entered the data to define the basics of the test unit, the user can then
select the “Next >” button to specify which methods on the class Person should
have tests written for them. This is done in the “Test Methods” dialogue presented
in Figure 13.12. In this example, we have selected to test all the setters and getters
and the construction of a new instance.

The effect of clicking on “Finish” in the Test Methods dialogue is that the Eclipse
JUnit plug-in generates the Java code necessary to implement a JUnit test case.
The resulting code is illustrated in Figure 13.13.

Note that it has created a subclass of the JUnit class TestCase. This super class
provides all the functionality required for this PersonTestCase to work within the
JUnit framework. Also note the main method. This main method has been defined
to start up the JUnit swing test runner application with the PersonTestCase class
as the provider of the test methods.

It then provides setup() and teardown() methods that can be extended for the
Person class. Finally, it provides null implementations for the various methods
to test within the Person class. Note the convention that a test always starts with
the name “Test”<Something>. This allows JUnit to automatically find methods

Fig. 13.15 The completed PersonTestCase class.

234 Agile Software Construction

Fig. 13.16 The Java Swing-based JUnit application displaying the results of the PersonTestCase.

to run in a test. This convention can be ignored but adding methods that don’t
follow this convention to a test is more work.

We are now in a position to implement the various tests. We can do this by
setting up a particular situation and then testing the result of some activity, etc.
For example, in Figure 13.14 we are testing whether a new instance of Person
has been initialised with the correct value (or indeed that getAge() can return
the appropriate value). This is done by creating an instance of the class Person
and then calling the assertEquals method. This method takes two parameters, the
value I expect to be returned by getAge() and the actual value returned. If they are
equal, the test is passed; if they are not, then this test fails and the failure will be
reported by the JUnit framework. Note it is possible to have more than one test
within a method to check various different values, etc.

There are a whole range of assert methods including assertEquals, assertTrue,
assertNotNull, assertNull and assertNotSame. Unfortunately, there is no assert-
NotEquals!

The finished test case for the Person class is presented in Figure 13.15. We
have removed the setup() and teardown() methods as they are not needed in this
situation.

13 · Tools to Help with Agile Development 235

Fig. 13.17 The JUnit interface illustrating a failed test case.

We are now in a position where we can run this test case. This is done by
running the PersonTestCase main method. The result of doing this is illustrated
in Figure 13.16. This is the JUnit swing interface. It lists the tests performed and
the result of the test. In this case, all tests have been passed.

If we now change one of the tests so that they fail and re-run the test case, we
can see what happens when a test fails. As you can see from Figure 13.17, it is clear
that at least one test has failed from the red bar. In addition, we can see which test
failed, where and what the values were. That is, it was line 23 of PersonTestCase
and the value expected was “Adam” but the value returned was “John,” etc.

Of course, most systems will be too complex to test in a single test case. To
support larger test suites, JUnit provides the TestSuite class. Once again, Eclipse
provides a wizard to simply create a TestSuite. Using the New menu option,
we can select to create a TestSuite rather than a single TestCase as illustrated in
Figure 13.18.

Once again this dialogue allows us to specify the name of our test suite (AllTests
in this example) as well as the Test cases that will comprise the test suite (in our case
just PersonTestCase). It also allows a main method to be created that will manage
the test suite class (such as adding a test to the test suite class). It also allows us
to specify the way in which we wish to see the results of running the test suite.
Once again we will select the swing GUI from the JUnit framework. Clicking
on “Finish” results in the Eclipse framework generating the code presented in
Figure 13.19.

Fig. 13.18 Using the JUnit TestSuite wizard within Eclipse.

Fig. 13.19 The generated AllTests test suite class.

13 · Tools to Help with Agile Development 237

Fig. 13.20 The JUnit interface reporting results for the AllTests test suite.

This is the fully functional test suite and does not require any additional code
to be added. Running this main method results in the JUnit TestSuite interface
being displayed (as illustrated in Figure 13.20).

Note that in this interface the PersonTestCase is presented as an element of the
larger test suite in the Results tree.

13.8 Online References

Eclipse – http://www.eclipse.org/
Omondo – http://www.omondo.com/
ANT – http://ANT.apache.org for more details.
JUnit – http://junit.sourceforge.net/
CUnit – http://cunit.sourceforge.net/
CppUnit – http://cppunit.sourceforge.net
CVS – http://www.cvshome.org

14
Obstacles to Agile Software

Development

14.1 Introduction

In this chapter, we will consider some of the obstacles that can be encountered
when trying to introduce an agile approach into an organisation. We will also try
to suggest some approaches to overcome these obstacles (although the sugges-
tions made in Chapter 12 regarding introducing an agile project are still impor-
tant).

In the remainder of this chapter, we consider the issues associated with man-
agement intransigence regarding new development processes. We also address
the issue of the “failed agile project” syndrome, that is, what do you do if some-
where else in your organisation an agile project has been tried and failed. Devel-
oper resistance is also a major drag factor as well as customer opposition (this
later possibility, the biggest stumbling block of all, as you really do need cus-
tomer involvement in any agile project). Next, we consider contractual difficulties
arising from the traditional use of requirements as the basis for any develop-
ment contracts. Finally, we discuss the lack of familiarity with agile development
methods.

14.2 Management Intransigence

The drive towards agile software development often comes from the developers
themselves or from developer teams. In such situations, management can represent
a significant obstacle to adoption of an agile approach. This can be for a host of
reasons that include:

1. Lack of familiarity with Agile Software Development methods.
2. Mis-comprehension of what eXtreme Programming and Agile Modelling of-

fers (such as believing them to be legalised hacking).
3. A feeling of losing control (as agile methods are more dynamic in terms of

planning activities than traditional approaches).

239

240 Agile Software Construction

4. Remoteness from the actual coalface and thus remoteness from development
issues.

5. The need to feel that they have the whole project planned out in advance.
6. Lack of suitability for their own review-and-assessment process. That is, if

they are assessed on a more traditional waterfall model, then they may have
the production of a detailed project plan as one of their aims and objectives
to be completed.

7. Belief that adopting eXtreme Programming (and thus doubling developers
up) will actually halve productivity. Although current research indicates that
the opposite is actually true.

8. The parapet syndrome. That is, a manager may not want to risk a different
approach to that normally adopted (i.e., putting their head above the parapet),
as no one may be censured for doing things the standard way, but they may
well be for doing things in a different way and failing!

9. The fear of the unknown!

There are no easy solutions to these questions – it all boils down to education.
Getting in a consultant who can help deal with their concerns and lack of knowl-
edge can be useful – but that assumes that they are willing to consider an agile
approach in the first place. Getting to that point may well be your job. Thus, using
books such as this one, the web and case studies may be your only option.

Often, the best solution is to try to adopt an agile approach on a low profile
project in which management has little interest. This can then be used as an
example of how it worked (assuming it did), to help accept and adopt the approach
on other projects. Even better is when another part of your organisation has
adopted an agile approach and been successful.

Finally, if you convince senior management of the potential benefits of an agile
software development process, then this can “influence” lower level management
to adopt it – again it is a case of education (although possibly suitable subtle
education).

14.3 The Failed Project Syndrome

In the previous section, I have said that having a successful agile project in another
part of your organisation can really help you to convince management of the
benefits of the new approach. However, the failed agile project can of course have
the reverse effect – i.e. merely proving their belief in the futility of this agile thing!

I have been in this situation when providing consultancy to a client. We talked
about the possibility of adopting an agile approach based on feature-driven de-
velopment method, Agile Modelling, etc. However, one manager suddenly butted
in to say that they had already tried this “so called agile approach” and that it had
been a waste of time and effort and that the result had been thrown away and
re-implemented in a proper manner. The manager in question was most forceful
in his condemnation of agile methods. In a bid to retain my credibility with the
client in general, I tried to drill down and find out what the issues had been with
the project. It turned out that:

14 · Obstacles to Agile Software Development 241

1. No one involved in the project had ever done an agile development before.
2. Half the developers were actually industrial engineering students taking time

out between their second and third years, and had limited commercial software
development experience anyway.

3. The belief appeared to be that you should never comment code (it was self-
documenting).

4. They never wrote any documentation (believing it not to be the agile way).
5. They never did any design (as they considered design to be the antithesis of

agility).
6. Refactoring appeared to have been an area they considered a waste of time!

Given this, it is not surprising that the project was not a success. Interestingly,
in contrast, the remaining project members and some very experienced software
engineers successfully redeveloped it. Thus, they had more experience and knowl-
edge of the domain when they redeveloped the project (or refactored it as it turned
out).

Of course, my take on this was that they had not really done an agile project
(they had achieved something that had some elements of various agile methods,
but hadn’t carried it through) and may well have failed anyway due to their reliance
on inexperienced and untried developers. By explaining why the approach they
took had failed, we at least opened the door to future agile software developments
(although as it transpired in this case, not on the project being discussed!). And yes,
the manager who expressed his concerns regarding agile development methods
was the manager of the failed project (but not the successful project!).

So, if you find yourself in this position, there are no guarantees of success, but
by dealing with each issue raised by the failed project and addressing them head
on, you may convince people of the value in trying again. This is particularly true,
if you can point to external projects that have succeeded (for these, look at the
agile websites referenced at the end of the book).

14.4 Developer Resistance

Many software developers are at best “comfortable with their current development
approach” and at worst “stuck in their ways.” In addition, many software devel-
opers would consider working in pairs or designing/modelling in teams as not
only an aberration, but actually extremely uncomfortable. This is for a number
of reasons.

Many (most) software developers have come through the university system
during which they have studied a computer science subject. During their degrees,
they would have undertaken numerous projects and submitted many pieces of
code for assessment. The majority of these will have had stringent rules against
collaboration or teamwork. In many cases, it will have been banned completely.
In others, it will have been frowned upon potentially with marks divided between
those submitting the course work. Only a few items of work will have encour-
aged teamwork (and I speak here as an ex-University lecturer!). Thus, software
developers are trained to work alone and guard against collaboration, etc.

242 Agile Software Construction

In addition, the software development industry does have a tendency to attract
individuals who would prefer to spend long hours in front of a monitor rather than
converse with other members of the human race. For such people, programming
in isolation to solve tricky technical problems is the height of what they do – make
them work in a pair to do this can be the worst torture they could imagine. I do
have some sympathy for this attitude, as I can sometimes experience it myself –
deluded, as I can be, that I know the answer and just want to get on and program the
solution – as that’s the fun bit. However, my experience is that usually someone
else can contribute something that I have either missed or discounted when I
should have included it (and it also keeps me honest!). However, there are some
who will never come round to this idea – in which case they need to work on
non-agile projects (and certainly not XP projects!).

14.5 Customer Opposition

If you are reading this book, then there is a very good chance that you are involved
in software development in some aspect – be it as a designer, developer, project
manager, etc. However, it is probably true that you are unlikely to be a customer or
a buyer of a software system (not that these people shouldn’t read this book!). This
is because the users of the software systems we build are not, in general, software
developers – they are lawyers, accountants, architects, book editors, opticians,
doctors, vets, etc. To be fair, I do not keep up with developments within their
areas of expertise; so why should they keep up with ours – and they won’t. Thus,
presenting a customer with an agile development approach can be daunting.

It is likely that when you present a client with an agile approach, they may be
less than ecstatic. This may be for a variety of reasons including:

1. Concern that they don’t know exactly what the software will do at the end of
the day.

2. Related to this, the lack of a detailed plan that they can review.
3. The level of involvement and commitment required of them.

One really useful thing to have is a “Customer Champion” – someone to push
your cause within the customer organisation. This champion may well require
education as to what an agile approach is and what benefits it has for the customer.
However, if you win an insider, this can be 50% of the battle won. The rest is down
to education of the customer regarding the potential benefits of an agile approach
to them – remember, the main motivation behind the agile movement is to delivery
working/useful software to the customer (rather than large and detailed design
documents/planning documents/UML models, etc.).

Remember, you really do need the customer on board when you get to the
development stage. The on-site customer (even if a virtual on-site customer) for
me is one of the key indicators for success. If you have one, then you are more
likely to succeed. Not having one does not necessarily guarantee failure (but it
certainly makes it far, far more likely).

14 · Obstacles to Agile Software Development 243

14.6 Contractual Difficulties

A very significant issue relating to agile software development methods is that
of contractual difficulties. By that, I mean that contracts traditionally have been
based around a waterfall software development approach. Thus, the buyer of the
software may state exactly what is required, and if all the specified functions are
not provided, then the contract is not met. This situation is often exacerbated
by the presence of fixed price projects. That is, a supplier must state exactly how
much they will charge to provide the required functionality. All of this of course
takes place in advance of the software development and may not even involve the
actual developers.

How does this fit with an agile approach in which we try to provide fixed
length iterations with variable functionality (which is determined based on current
requirements, etc.)? The answer to this is not that simple. For example, on a recent
project (which actually lasted over 2 years) we had to initially provide a fixed cost
quote for the first cut of the software. Once we had done that and were able to
prove that we could produce the goods, on time and within the budget, then we
could work with the client to adopt a more agile approach in which we fixed the
amount of time spent on an iteration and adjusted the requirements per iteration
as required by their (changing) business needs. We could do this because the client
trusted us.

Therein lies the issue – you need to develop a level of trust between yourselves
and the clients in order to adopt an agile approach. This is a two-way street in
that you need to trust the clients to work with you (which in some cases can
be a novel idea). This is as true for an internal project as it is for an external
software development project. However, how do you do this before you have won
the contract – indeed how do you win the contract when you might be involved
in a competitive bid?

We have found that we needed to make the case for our approach a part of
any bid process we are making. This often requires a level of pre-bid education
to try to ensure that an agile method will be accepted in an appropriate manner.
At times, this has meant allowing an initial iteration to be carried out in a more
traditional approach (as described above).

Note that we consider educating our potential clients, with regard to agile de-
velopment methods, an important aspect of our client relationship. In many cases,
software buyers (particularly buyers of bespoke software systems) do not have a
particularly high regard for our chosen profession and can often cite previous
bad experiences. They may therefore be surprisingly amenable to the potential
benefits of an agile approach.

Another potential contractual difficulty can be in acceptance testing. In many
cases, a software buyer may wish to specify the set of acceptance tests that must be
passed at the start of the project. This may be done to ensure that when the software
is delivered, there can be no argument about what constitutes acceptance. In some
cases, this may be enforced by the development company itself (again to ensure
no arguments of acceptance). However, doing this upfront goes against the agile
philosophy – that is, we are not trying to specify exactly what will constitute the

244 Agile Software Construction

final system at the start, as the exact set of features implemented may change as the
requirements, their priority and content change. Our solution to this is that each
feature for each iteration indicates the set of tests that represent acceptance. This
may be formally via an acceptance test plan document or informally based on the
understanding of the features. In either case, it assumes a level of involvement from
the clients during each iteration to ensure a successful delivery and acceptance of
the software. Whilst this can be time-consuming, it can be of great help, as the
client is directly involved in each iteration that helps to feed information into
the project. In addition, it can help to make sure that the software does what it
should, as the interaction between developers and the on-site customer can help
in defining unit tests as well as acceptance tests (rather than developers inventing
unit tests without reference to the users’ needs).

In general, we have found that working with clients so that they understand
some of the benefits from their side is essential to the adoption of an agile devel-
opment method. In particular, we have found emphasising the following to be
useful:

1. The level of control/influence they can exert. That is, the extent to which the
clients can influence what is done when, can sometimes be a major surprise.
Software buyers often used to hand over the requirements, and then feel that
they lose control of the project, and that they are left out of any project decision
made internally. In an agile approach, the client and his representatives should
be on board all the time (indeed XP and Agile Modelling require their direct
inclusion in the team).

2. The feedback they will receive. Returning to the issue of the involvement of the
client in the project, in many cases, clients have received very little feedback
on the progress of the project. Often what feedback they have received may
later prove to at best have been optimistic and at worst a down right lie. As
the clients find themselves in the midst of the project, they will naturally
receive regular feedback. They will also be able to judge the accuracy of the
information they receive as and when releases are made (at frequent intervals).

3. The adaptability of the project to changing requirements. One regular issue
for bespoke software buyers is the problem of changing requirements. If the
requirements document is the basis of the contractual agreement between
supplier and customer and subsequently if a requirement changes, then the
contract changes. In some cases, this can be a very large hurdle to cross and
will require lawyers and protracted negotiations. However, as requirements
may be drawn up well in advance of the software development, they may well
have changed/may well change in the future. By adopting an agile approach,
as requirements change, these changes can be naturally and simply passed
through to the project team.

4. The ability to prioritise features. A (possibly) surprising advantage of the agile
approach to customers is that a low priority feature in a software system can
be included but only implemented if time allows or its priority rises. This can
be important whether for political reasons (some senior manager thinks it
is important but no one else does, so it has to be in the requirements) or in
green field software where the importance of some features may be unclear at

14 · Obstacles to Agile Software Development 245

the start. As feature’s priority is continually revised, then its inclusion (or not
in a particular iteration) can be reviewed.

14.7 Familiarity with Agility

One major obstacle to adopting an agile software development is the lack of
knowledge of how to start and run such a project. Chapter 12 discussed ways
to introduce this approach into an organisation. However, until you have been
involved in one or more agile software developments, a great many questions may
stop you in your tracks. For example, “how do we estimate the cost of the software
to the clients at the start of a project?” “how do we decide how many iterations
will be there?” “how do we know what will be in each iteration?” and “how do
we decide how long an iteration should be?” There are no right or wrong answers
to these questions – although there are answers that may be more right or more
wrong than others. We will take up each point in turn and try to discuss why each
should not stop you from starting an agile software development project.

How do you estimate the cost of the software to the clients? The issue here may
appear to be a question of how can we determine how much this software will cost
for us to develop, given that we don’t yet know exactly what we will do, when and
how long (particularly later) functionality will take to implement. The real issue
here is that the focus of the question is wrong. Customers need a budget to work
within and so do you. Thus, if the client has a budget of £60,000 and requires the
final release in 6 months time, then you already know how much effort you can
afford to take on the project. That may or may not be enough to implement all
the current requirements (which may be subject to change anyway). However, in
general, the majority of software systems do not require all the possible functions
that could be put into them, but they do need to remain within their budgets.
Thus, what you need to be aware of is what budget you need to work within;
and then provide an indication of how much of their specified functionality you
currently believe you can achieve within that budget. Obviously, this has issues
within competitive bids – but this takes me back to the issue of education – make
them understand the issues involved and why you are being open and honest
regarding your charges. One way we have handled this is by specifying a daily
person rate and indicating how many person days they can buy for their budget,
and relating that to the anticipated feature list.

How do we decide how many iterations there will be? This may appear as an
obstacle because the question being implied here is “how many iterations will it
take to implement all the requirements?” Whereas in fact, the issue should be “How
many iterations should there be, to enable the clients to receive an appropriate
number of releases, and for them to provide feedback to the development team, and
to consider the current open questions?” This question implicitly acknowledges
that some features may remain un-implemented as time may not allow for them.
It also acknowledges that some as yet unknown user-feedback will impact upon
that set of features. Thus, the size of each iteration relates more to the overall
length of the project, the size and complexity of the system being implemented
and the business processes of the client that will allow interim releases to be made.

246 Agile Software Construction

For example, on one relatively small Java web-application project we had a 2-week
iteration cycle; however, on a large two and a half year project, iterations last 3 or
4 months. Thus, the number of iterations was determined as a factor of the length
of the project against the length of an iteration (i.e., over two and a half years, we
had seven or eight iterations).

How do we know what will be in each iteration? Again this question arises from
the more traditional waterfall mind set – it is really saying, “I want to know exactly
what will be done in all iterations of the project.” Whereas, agile methods essentially
say that we will roughly decide what features, functions, use cases or user stories
(depending on your preferred terminology or approach) will be planned for each
iteration, but that only the current iteration will be planned in detail. Then, at the
end of the current iteration, we will review the overall plan for the iterations and
features, and that the next iteration will then be planned in detail. Thus, we only
plan for the next few weeks or months (depending upon the size of an iteration) in
detail. This does result in more planning than with a big upfront plan approach,
but is actually more effective (both of which can be of real surprises to first-time
agile developers). It is also more realistic, as the number of project plans that end
up being works of fiction with little relationship to reality is probably too scary to
contemplate.

How do we decide how long an iteration should be? This goes back to an earlier
question, but is worth considering here again. Each iteration should be large
enough to contribute something of value to the end-user, but small enough to allow
for rapid and useful feedback from those users. Larger, more complex systems will
thus naturally require larger iterations, whereas smaller, less complex systems will
be able to achieve “something of value to the end-user” in smaller steps. Although,
it is also worth noting that as a project matures, later iterations may be able to
achieve more in shorter time periods, as there are larger “chunks” that can be
exploited.

References

Alexander, C. The Timeless Way of Building, Oxford University Press, New York,
1979.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I. and
Angel, S. A Pattern Language, Oxford University Press, New York, 1977.

Ambler, S. W. Agile Modeling: Effective Practices for Extreme Programming and the
Unified Process, Wiley and Son, Inc, New York, ISBN: 0471202827, 2002.

Auer, K. and Miller, R. Extreme Programming Applied: Playing to Win (The XP
Series), Addison-Wesley, New York, 2002.

Bass, L., Clements, P. and Kazman, R. Software Architecture in Practice, Addison-
Wesley, Reading, MA, 1998.

Beck, K. Extreme Programming Explained: Embrace Change, Addison-Wesley,
Reading, MA, 1999.

Birrer, A. and Eggenschwiler, T. Frameworks in the Financial Engineering Domain:
An Experience Report: ECOOP’93, pp. 21–35.

Boehm, B. Get ready for agile methods, with care, IEEE Computer, Jm 2002, 64–69.
http://fc-md.umd.edu/projects/Agile/Boehm.pdf

Booch, G. Object-Oriented Analysis and Design with Applications, 2nd Edition,
Benjamin Cummings, Redwood City, California, 1994.

Booch, G., Martin, R. and Newkirk, J. Object Oriented Analysis and Design with
Applications, Addison-Wesley, Reading, MA, ISBN: 020189551X, 2003.

Bowers, J., May, J., Melander, E., Baarman, M. and Ayoob, A. Tailoring XP for large
system mission critical software development, in D. Wells and L. Williams
(Eds.): XP/Agile Universe 2002, LNCS 2418, Springer, Chicago, IL, 2002,
pp. 100–111.

Budinsky, F. J., Finnie, M. A., Vlissides, J. M. and Yu, P. S. Automatic code gener-
ation from design patterns, IBM Systems Journal, 35(2), 1996.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. Pattern-
Oriented Software Architecture—A System of Patterns, Wiley and Sons Ltd.,
New York, ISBN: 0471958697, 1996.

Carmichael, A. and Haywood, D. Better Software Faster, Prentice-Hall, NJ, ISBN:
0130087521, 2002.

Carmichael, A. R. and Swainston-Rainford, M. J. Feature Game—A Game for
up to 24 players Based on Feature Driven Development, OT2000 Conference,
BCS-OOPS, Oxford, UK.

247

248 References

Coad, P., Lefebvre, E. and De Luca, J. Java Modeling in Color, Prentice-Hall, En-
glewood Cliffs, NJ, 1999.

Cockburn, A. Agile Software Development, Addison-Wesley, Reading, MA, ISBN:
020699699, 2002.

Craddock, A. DSDM and Extreme Programming: Agility with Structure.
http://www.dsdm.org/en/publications/newsletter3/dsdm xp.asp

Fowler, M. Analysis Patterns: Reusable Object Models, Addison-Wesley, Reading,
MA, ISBN: 0201895420, 1997.

Fowler, M. Refactoring: Improving the Design of Existing Code, Addison-Wesley,
Reading, MA, 1999.

Gamma, E., Helm, R., Johnson, R. and Vlissades, J. Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

T. Glib. The Evolutionary Project Managers Handbook, Evo Manuscript
Distribution Edition 0.1, 1997, http://home.c2i.net/result-planning/Pages/
2ndLevel/glibdownload.html

T. Glib. Competitive Engineering: A New Systems Engineering Approach for Control-
ling Complexity, Communication Clearly and Challenging Creativity, Addison-
Wesley, Reading, MA, ISBN: 020167498X, 2002.

Grand, M. Patterns in Java: Volume 2, John Wiley & Sons, New York, ISBN:
0471227293, 1999.

Grand, M. Patterns in Java: A Catalog of Enterprise Design Patterns Illustrated with
UML Volume 3, John Wiley & Sons Inc, New York, ISBN: 0471333158, 2001.

Grand, M. Patterns in Java: A Catalog of Reusable Design Patterns Illustrated with
UML, 2nd Edition, Volume 1, John Wiley & Sons, New York, ISBN: 0471227293,
2002.

Hofmeister, C., Nord, R. and Soni, D. Applied Software Architecture, Addison-
Wesley, Reading, MA, 1999.

Hunt, J. Guide to the Unified Process, Springer-Verlag, Berlin, ISBN: 1852337214,
2003.

Jacobson, I., Booch, G. and Rumbaugh, J. The Unified Software Development Pro-
cess, Addison-Wesley, Reading, MA, 1999.

Jacobson, I., M. Christensen. Object-Oriented Software Engineering: A Use Case
Approach. Addison-Wesley, Reading, MA, ISBN: 0201544350, 1992.

Jeffries, R., Anderson, A. and Hendrikson, C. Extreme Programming Installed,
Addison-Wesley, Reading, MA, ISBN: 0201708426, 2000.

Johnson, R. E. Documenting Frameworks with Patterns, Proc. OOPSLA’92, SIG-
PLAN Notices 27(10), 1992, 63–76.

Kruchten, P. The 4+1 View Model of Architecture, IEEE Software, 12(6), Novem-
ber 1995, IEEE. http://www.rational.com/support/techpapers/ieee/

Larman, C. Applying UML and Patterns, 2nd Edition, Prentice Hall, PTR, Engel-
wood Cliffs, NJ, ISBN: 0130925691, 2001.

Metsker, S. J. The Design Patterns Java Workbook, Addison-Wesley, Reading, MA,
ISBN: 0201743973, 2002.

Palmer, S. and Felsing, M. A Practical Guide to Feature Driven Development, Pren-
tice Hall, Engelwood Cliffs, NJ, 2002.

Rechtin, E. and Maier, M. The Art of System Architecting, CRC Press, Boca Raton,
FL, 1997.

References 249

Rumbaugh, J. et al. Object-Oriented Modeling and Design, Prentice Hall, Engel-
wood Cliffs, NJ, 1991.

Stapleton, J. DSDM, Dynamic Systems Development Method, 1997.
Wake, W. C. Extreme Programming Explored, Addison-Wesley, New York, 2002.
Williams, L. and Erdogmus, H. On the Economic Feasibility of Pair Program-

ming, International Workshop on Economics-Driven Software Engineering in
Conjunction with the International Conference on Software Engineering, May
2002 (http://collaboration.csc.ncsu.edu/laurie/Papers/EDSER02Williams
Erdogmus.pdf).

Williams, L. and Kessler, R. Pair Programming Illuminated, Addison-Wesley Pro-
fessional, Reading, MA, ISBN: 0201745763, 2003.

Williams, L., Kessler, R. R., Cunningham, W. and Jeffries, R. Strength-
ening the Case for Pair-Programming, IEEE Software July/Aug 2000
(http://collaboration.csc.ncsu.edu/laurie/Papers/ieeeSoftware.PDF).

Williams, L. A. The Collaborative Software Process, Ph.D. Dissertation,
2000, University of Utah, Salt Lake City (http://www.cs.utah.edu/∼lwilliam/
Papers/dissertation.pdf).

Online References

Agile Software Development Alliance www.agilealliance.org
Agile Modelling mailing list www.agilemodeling.com
Extreme Programming http://extremeprogramming.org/
XP Universe Web site http://www.xpuniverse.com
Pair Programming Web Site http://www.pairprogramming.com/
Rational Corp Web Site http://www.rational.com/
PRINCE 2 http://www.ogc.gov.uk/
DSDM http://www.dsdm.org/
Patterns web page is: http://st-www.cs.uiuc.edu/users/patterns/patterns
The World-Wide Institute of Software Architects. http://www.wwisa.org

Index

A
Acceptance tests 90
Agile 2, 9
Agile adoption 214
Agile Alliance 4, 7, 10
Agile and Prince 2 2, 205
Agile culture 213
Agile Manifesto 4, 10
Agile methods 12
Agile modelling and RUP 194,

201
Agile modelling and XP 125
Agile modelling and XP – objectives

131
Agile modelling and XP – Planing

132
Agile modelling and XP, common

practices 126
Agile Modelling Criteria 15, 36
Agile Modelling Practices 45, 126
Agile Models – Accuracy and

Consistency 37
Agile Models – Add Value 36
Agile models – Are Understandable

37
Agile Models – Fulfil their purpose

37
Agile Models – Simple as possible

39
Agile Models – Sufficiently Detailed

39
Agile obstacles 239
Agile online references 7
Agile teams 214

Analysis and Design Modelling
15, 23, 125, 196

ANT 223
Architectural Spike 18
Architecture 142, 153, 175
Architecture Myths 177
Architectural Modelling 153
Auer, K 6, 152

B
Beck, K 6, 70, 85, 94, 227
Big Modelling Up Front See BMUF
Big Up Front Design See BUFD
BMUF 131
Bottle kneck 73
BUFD 152
Business Game 77

C
C# 4, 69, 77, 218
C++ 54, 69, 218
Case Tools 41, 62
Caves 152
Class Diagrams 31, 39, 52, 65, 127
Coach 123
Coad, P 6, 28, 204
Code Refactoring 62, 81, 113, 135,

145, 158
Code Testing 58, 62, 80, 100, 108,

120, 137
Coding quality 16, 84
Coding Standards 84, 118, 149
Collaboration 11, 21, 31, 161, 168,

241

251

252 Index

Collaboration diagrams 40, 60
Collective Ownership 51, 83, 121,

126, 148
Commitment Phase 78, 95
Communication 25, 63, 71, 110, 139,

216
Concurrent Versions System

See CVS
Configuration Management 226
Continuous Integration 83, 119, 148
Contracts 11, 32, 162, 243
Courage 73, 125, 192, 214, 241
Customers 11, 73, 77, 79, 86, 93, 143,

244
CVS 5, 43, 81, 122, 148, 218, 226

D
Deliverables 10, 24, 198
Design for testability 46, 56, 126, 137
Design Patterns 57
Design Patterns, when not to use 59
Design Patterns, when to use 59
Developer Resistance 241
Development, distributed 216
Development, incremental 163
Development, iterative 164
Distributed teams 216
Documentation 47, 59, 65
DSDM 13, 21

E
Eclipse 5, 43, 54, 101,128,

148, 218
Eclipse and Junit 228
Elaboration Phase 78, 90, 98
Environment 152
Estimating 77, 173, 94, 168
Exploration Phase 78, 90, 94
Extreme Programming See XP

F
Feature 27, 165, 173
FDD 14, 26, 73, 161, 173, 183
FDD and RUP 204
FDD and XP 178
Feature Centric Development

See FDD

Feature Driven Development
See FDD

Feature to task planning 187
Feedback 72
Fill-your-bag 100
First Agile Project 212
Forty hour week 85, 150
Functional Tests 237

G
Game, Planning 74, 90
Goals, Planning game 74, 90

I
Ideal Programming time 191
Incremental Change 49
Incremental Development 163
Initial Planning Game 90, 96
Integration Testing 120
Iteration Planning 99, 133, 169, 171,

178, 186
Iterations 168
Iterative and Incremental Modelling

49, 62
Iterative Development 164

J
Java 4, 15, 34, 47, 69, 93, 127, 149,

161, 200, 217, 266
Junit 5, 81, 103, 144, 172, 214, 227
Junit and Eclipse 228

L
Lightweight 12, 25, 30, 69, 74, 86,

157, 218, 221

M
Management challenges 239
Metaphors 85, 150
Model Productivity 56, 61
Model Validation 55
Model Wall 51, 83, 121, 126, 148
Model-View-Controller See MVC
Modelling with others 50
Modelling and RUP 194, 201
Modelling misconceptions 31, 41
Modelling Motivation 61

Index 253

Modelling Sessions 63
Modelling Simplicity 52
Modelling 50, 62
Multiple Models 129
MVC 31, 60, 139

O
Obstacles to Agile Methods 239
Omondo 222
On-site Customer 84, 122, 126, 148,

159
Ownership 51, 83, 121, 126, 148

P
Pair Programming 82, 109, 126, 140,

158
Pair Programming – Experience 146
Pair Programming – Making it Work

110
Pair Programming – People 82, 214
Patterns 57
People 71, 75, 82, 93, 213
Permanent versus temporary models

46, 61, 132, 138
Planning Game 74, 143
Planning Iterations 74, 162, 167, 184
Post Project Review 151
Prince 2 193, 205
Project Management 162, 167
Project Planning Workshop 74, 143

R
Rational Rose 33
Rational Unified Process See RUP
Refactoring 62, 81, 113, 135, 145, 158
Release Planning Game 90, 97, 133
Release Planning 18
RUP 35, 193, 195
RUP and FDD 204

S
Scalability 151, 157
SCRUM 25, 63, 71, 110, 139, 216
Selling Agility 211
Simple Design 52, 79, 116, 126, 138,

144
Simplicity 52, 71, 76

Small Releases 79, 116, 143, 158
Smalltalk 3, 69
Sort by Risk 95
Sort by Value 95
Spikes 18
Stakeholders 51, 84, 92, 126
Stand-up Meetings 122, 126, 148, 159
Steering Phase 78, 96
System Metaphor 85, 151

T
Task to feature planning 187
Teams 50
Temporary Models 51, 83, 121, 126,

148
Test first 55, 62, 80, 100, 137
Testing 56, 62, 80, 100, 108, 120, 137,

144
Time boxing 166
Tool Misconceptions 41, 62
Travel Light 47, 54, 63, 157

U
UML 33
Understandability 47, 54, 63, 157
Unified Modelling Language

See UML
Unified Process 35, 193, 195
Unit Tests See Testing
Unit Tests – Junit See Junit
Updating Models 42, 47, 66, 132
Use cases 196
User Interface 18, 133, 140, 144, 175
User stories 73, 125, 192, 214, 241

V
Validation 46, 56, 126, 137
Visio 33

W
Waterfall 163
Whitboarding 456, 53, 65, 146, 157,

190

X
XP 16, 69
XP – where it works best 159

254 Index

XP and Agile Modelling 125
XP and Agile Modelling – Common

Practices 126
XP and Agile Modelling – objections

131
XP and FDD 178
XP Controversy 19, 86
XP Courage 73, 125, 192, 214, 241
XP Culture 213
XP Myths 69
XP Overview 16, 84
XP Planning 90, 97
XP Planning and Agile Modelling

132
XP Planning Game 74, 91, 143
XP Planning Game – Influences 76
XP Planning Game – Players 92
XP Practices 73
XP Practices - Refactoring 62, 81,

113, 135, 145, 158
XP Practices – architecture 157
XP Practices – coding standards 84,

118, 149
XP Practices – collective ownership

51, 83, 121, 126, 148
XP Practices – continuous integration

119, 148

XP Practices – developer resistance
241

XP Practices – forty hour week 85,
150

XP Practices – metaphors
151, 157

XP Practices – On-site Customer
122, 126, 148, 159

XP Practices – Pair Programming 82,
109, 126, 140, 158

XP Practices – Planning Game 74,
91, 143

XP Practices – Scalability 151, 157
XP Practices – Simple Design 52, 79,

116, 126, 138, 144
XP Practices – Small Releases 79,

116, 143, 158
XP Practices – Testing 56, 62, 80,

100, 108, 120, 137, 144
XP Project Lifecycle 17
XP Stories 17, 73
XP Values 16, 69
XP Values – Communication 70
XP Values – Courage 73, 125, 192,

214, 241
XP Values – Feedback 72
XP Values – Simplicity 52, 71, 76

